Clinical Medicine Insights: Geriatrics

REVIEW

Treatment of Ulcerative Colitis in the Elderly: A Systematic Review

Brooke R. Baggenstos¹, Brian J. Hanson² and Aasma Shaukat¹

¹Division of Gastroenterology, University of Minnesota, Minneapolis, MN. ²Department of Medicine, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN. Corresponding author email: shaukat@umn.edu

Abstract: Ulcerative colitis (UC) is increasingly recognized as a disease affecting the elderly. Approximately 10%–30% of the UC population is over the age of 60 years. Additionally, younger patients with UC are aging and thus comprise a second group of elderly IBD patients. To date, there have been no clinical trials that have evaluated treatment efficacy of UC in the elderly population. The aim of our study was to conduct a systematic review of all randomized controlled trials (RCTs) addressing treatment outcome in UC; we also sought to identify the elderly population, defined as age 60 years or older, represented in these studies, to see if pooled data would lead to meaningful conclusions regarding treatment efficacy and safety profile in the elderly. A search of the MEDLINE database via PubMed and the EMBASE database via Scopus was performed to identify all RCTs evaluating medical therapy for UC in humans, published within the English language through September 2012. Studies were grouped into three categories: biological agent (BA) therapy; immunosuppressant (IS) therapy; and 5-aminosalicylic acid (5-ASA) therapy. To estimate the number of elderly patients in each study, mean age plus 1 and 2 standard deviations (SD) was calculated to find the closest approximation to age 60. Of 876 studies, 112 RCTs were included in the final analysis—20 studies for BA, 20 for IS, and 72 for 5-ASA agents. While nearly all studies reported either a mean or median age, only 38% additionally reported the SD and age range. The mean composite age was 39.2 years for the BA studies, 38.5 years for the IS studies, and 42.8 years for the 5-ASA studies, consistent with a young middle-aged patient. We estimated that no more than 16% of patients per study would have qualified as elderly, and in most cases a much smaller percentage (<8%). Additionally, there were no BA or IS RCTs that reported results by age subgroup analysis. Four studies in the 5-ASA group report age-specific analyses and showed no difference in treatment efficacy by age. None of the 112 RCTs reported age sub-analyses of safety, tolerability, adverse events, or withdrawal rates. There is insufficient evidence to evaluate efficacy of treatment and adverse events from treatment for UC in the elderly. With the rising number of elderly patients with UC, there is a need for more clinical trials that specifically address UC treatment in this unique population.

Keywords: IBD (inflammatory bowel disease), UC (ulcerative colitis), elderly, treatment, safety

Clinical Medicine Insights: Geriatrics 2013:6 1–26
doi: 10.4137/CMGer.S5978

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article published under the Creative Commons CC-BY-NC 3.0 license.
Introduction

Ulcerative colitis (UC) is a chronic, idiopathic inflammatory condition of the gastrointestinal tract with a relapsing, remitting course. While considered to be primarily a condition affecting young adults, UC can present at any age, including the elderly. Not only are new cases of UC diagnosed in older individuals, but given the negligible impact of inflammatory bowel disease (IBD) on mortality, younger patients with UC are also aging, and thus comprise a second group of elderly IBD patients. Determining the true incidence of UC in the elderly is challenging for a variety of reasons. In addition to differences in populations studied, regional variations, case definitions of IBD, and the potential for misdiagnoses of ischemic colitis and nonsteroidal anti-inflammatory drug (NSAID)-induced colitis, there has been no standard definition of what age constitutes ‘elderly’. In several publications, the term was arbitrarily assigned to patient groups aged between 40–75. Most developed world countries have accepted the chronological age of 65 years as a definition of ‘elderly’ or older person; however, the United Nations generally uses 60 years or greater to refer to the elderly population.

The traditional view on IBD proposed a bimodal age distribution, with an initial peak between 20–30 years and a second, smaller peak occurring between the age of 60–80. However, the existence of this second peak has not been reproduced in other studies, including the most recent epidemiologic survey from Olmsted County, Minnesota. The recognition of a growing elderly IBD population warrants a critical assessment of the literature used to guide treatment in this unique population. Factors potentially influencing optimal disease management include polypharmacy, drug interactions, comorbidity, and differences in disease location and severity.

The goals for treatment of UC in the elderly remain the same as in younger patients, including induction and maintenance of clinical response and remission, reduction of disease related complications, improvement of quality of life, and minimizing short- and long-term toxicity. Early aggressive therapy along with combined therapy has been endorsed as a more favorable treatment strategy for the general IBD population. Although the commonly accepted perception is to be cautious when treating the elderly, the data behind these recommendations appears to be lacking. Ideally, there would be randomized controlled studies with the primary objective being the evaluation of treatment efficacy in elderly UC patients; however, this data does not yet exist. Therefore, the treatment algorithm for elderly IBD patients has been extrapolated from the same trials that have formed the basis for clinical practice recommendations and evidence-based guidelines for the management of IBD in general.

Randomized controlled trials (RCTs) are recognized as the best approach available to study treatment outcome. By implementing strict study enrollment criteria, these trials aim to minimize the potential bias of confounding variables so as to preserve the internal validity of the study results. It is assumed that the findings obtained from RCTs carry a high level of external validity with applicability to general clinical practice. However, using such stringent inclusion and exclusion criteria might actually limit the generalizability of the trial results. In a recent study, Ha et al found that only 26% of patients in their practice would qualify to participate in any of the 7 RCTs of biological therapy for UC that they reviewed. The applicability of published RCTs dealing with treatment of UC, specifically to elderly patients, is unknown.

In this systematic review of all randomized controlled trials addressing treatment outcome of UC, our aim was to identify the elderly population represented in these studies and to evaluate any subgroup analyses by age; we aimed to see if pooled data would lead to meaningful conclusions regarding treatment efficacy and safety profile in the elderly.

Methods

We performed a comprehensive computer-assisted literature search for treatment of ulcerative colitis; we used the MEDLINE database via PubMed, searching up to September 2012. MeSH terms were ‘Colitis, Ulcerative/drug therapy’ OR ‘Colitis, Ulcerative/therapy’. Applied filters included randomized controlled trials, human species, and English language. A total of 531 citations were found. Additionally, the EMBASE database was searched via Scopus. The key term ‘ulcerative colitis’ was used in conjunction with all the active agents identified in our PubMed search. A total of 345 additional citations were found.
Titles and abstracts were assessed by one reviewer (BH) according to predetermined inclusion criteria. Studies were accepted if they were RCTs, patients had either active UC or remission of UC, and there was evaluation of an active agent in the treatment efficacy of UC. Active agents included in this study were biological agents (BA), immunosuppressants (IS) and 5-aminosalicylic acid (5-ASA) therapy. A total of 291 studies were immediately excluded because the active agent was not a BA, IS, 5-ASA therapy, or by review of title and abstract alone, were not RCTs. After this initial exclusion, 2 independent authors reviewed the remaining 240 studies (BH and BB). When differences existed, they were resolved by consensus; when needed, a third reviewer was consulted (AS). Relevant studies were identified from this group based on the inclusion and exclusion parameters. Outcome measures included response to therapy, remission rates, and relapse rates. We used the authors’ definition of outcome for clinical remission, endoscopic remission, and response. When multiple comparisons were evaluated in a single study, the analysis was restricted to the most clinically appropriate or most effective dose. Since the patients in a given study are all randomized, the population characteristics of each treatment arm should be representative of the entire study population. After critical review, studies were further excluded if they were not RCTs or if they had primary outcomes other than those specified. Additional studies were excluded if the active agent was a rectal formulation alone, age data was not reported, included pediatric population only, reported on patient populations previously studied, and reported on both UC and Crohn’s disease (CD) without separating age data and/or results. In total, 240 studies were included and grouped into three categories: BA, IS, 5-ASA related agents. A flow diagram describing the search and study selection strategies is shown in Figure 1.

Biological therapy was evaluated in 33 studies identified by the original search. Thirteen studies were excluded; four were not RCTs, 1 evaluated pediatric patients, 2 a previously studied population, 2 enema only studies, and 4 had outcomes other than induction or maintenance of remission. In total, 20 studies evaluating BA therapy for the treatment of UC were included.

Immunosuppressant therapy was evaluated in 68 studies identified by the original search. Six studies were not RCTs. Three studies evaluated pediatric patients, 24 rectal suppositories or enemas, 3 outcomes other than induction or maintenance of remission, and 4 previously studied populations. Two studies contained no age related data, 2 involved only patients with distal disease, and 2 evaluated patients with CD and UC, but did not report results by disease subset. One study did not evaluate an active agent but rather evaluated patient-led variable dosing. One study did not report sufficient results. These 48 studies were excluded, leaving 20 studies evaluating IS therapy for the treatment of UC included in this analysis.

5-ASA therapy was evaluated in 139 studies identified by the original search. Exclusion was because of the following reasons: 6 studies were not RCTs, 3 evaluated pediatric patients, 44 enemas or suppositories, 6 outcomes other than induction or maintenance of remission, 2 previously studied populations, 4 contained no age related data, 1 evaluated the effect of a tailored regimen rather than the effect of the active agent itself, and 1 study evaluated patients with UC and CD, but did not report results by disease subset. A total of 72 articles evaluating 5-ASA therapy were included.

The EMBASE database results were combined with the original MEDLINE search. This yielded 201 citations. In a similar fashion one reviewer (BH) assessed the title and abstracts. 190 articles did not meet predetermined inclusion criteria. Of the 21 remaining articles, 15 were part of the original MEDLINE search; full text English version was not available in ‘three of these. One article was a study reported in two unique journals and had already been included in the EMBASE search. Only 2 unique articles met our inclusion criteria. Both were excluded because they did not report adequate age data.

Data Synthesis and Analysis

There is no standardized method for reporting age. Thus, age was reported in a variety of ways, including numbers for the total population enrolled versus subsets by treatment group. The variables for age assessment include a reported mean or median age with or without standard deviation (SD) or standard error of the mean (SEM). Age range was sometimes reported. Interquartile range was rarely included.

In this analysis, we define elderly as an age of 60 years or older. When age ranges were reported in
the articles analyzed, one could determine if patients greater than 60 years of age were included in the study. When standard deviation was reported, estimation of the number of elderly patients in the study population could be calculated. Likewise, if the SEM was instead reported, it was converted to SD (calculation $\text{SEM} \times \sqrt{n} = \text{SD}$). To estimate the number of elderly patients in each study, mean age plus 1 and 2 SD was calculated to find the closest approximation to age 60. Additionally, mean age plus 1 SD would represent approximately 16% of the study population, whereas mean age plus 2 SD would represent approximately 2.5% of the study population. Using these percentages, we then estimated the number of patients who were elderly in the study group. For example, in a study with 100 participants and mean age of 40 and a SD of 10, sixteen percent of the patients would be 50 years or older, and 2.5% would be 60 years or older. With a sample size of 100, that would mean 2–3 individuals would be elderly. Of note, there were a few studies that reported specific age subgroups, with number and percentage. When this was the case, we did not perform our own calculation but rather used what the study reported.

Results

Biological agents

Biological agents age summation

Twenty studies were included in this analysis and are summarized in Table 1. All 20 studies reported a mean age. The composite mean age was 39.2 years with a mean range of 36.2 to 44 years. Thirteen studies reported SD of the mean age, 4 studies reported age range, 1 study reported interquartile range, and only 1 study reported both the SD and age range. When reported, the overall age range was 18–75, but in
Table 1. Treatment of Ulcerative Colitis in the Elderly

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Total enrolled</th>
<th>Mean age</th>
<th>Range</th>
<th>Mean age plus 1 SD</th>
<th>Comparator</th>
<th>Study end-point</th>
<th>Comparator Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutgeerts</td>
<td>2005</td>
<td>364</td>
<td>121</td>
<td>42.4</td>
<td>14.3</td>
<td>Infliximab</td>
<td>8 wks</td>
<td>Induction remission 38.8% vs. 14.9%</td>
</tr>
<tr>
<td>Armstrong</td>
<td>2004</td>
<td>20</td>
<td>364</td>
<td>40.5</td>
<td>13.1</td>
<td>Infliximab</td>
<td>8 wks</td>
<td>Clinical response 100% vs. 100%</td>
</tr>
<tr>
<td>Probert</td>
<td>2004</td>
<td>20</td>
<td>10</td>
<td>36.2</td>
<td>14.3</td>
<td>Placebo</td>
<td>8 wks</td>
<td>Placebo</td>
</tr>
<tr>
<td>Ochsenkuhn</td>
<td>2004</td>
<td>13</td>
<td>6</td>
<td>31.0</td>
<td>8.5</td>
<td>Placebo</td>
<td>8 wks</td>
<td>Treatment failure 50% vs. 0%</td>
</tr>
<tr>
<td>Sands</td>
<td>2003</td>
<td>43</td>
<td>23</td>
<td>41.0</td>
<td>13.1</td>
<td>Placebo</td>
<td>8 wks</td>
<td>Clinical response 78% vs. 42%</td>
</tr>
<tr>
<td>Sands</td>
<td>2001</td>
<td>11</td>
<td>10</td>
<td>36.2</td>
<td>24–50</td>
<td>Placebo</td>
<td>8 wks</td>
<td>Clinical response 100% vs. 100%</td>
</tr>
<tr>
<td>Reinisch</td>
<td>2011</td>
<td>390</td>
<td>130</td>
<td>36.5</td>
<td>18–75</td>
<td>Placebo</td>
<td>8 wks</td>
<td>Placebo</td>
</tr>
<tr>
<td>Sands</td>
<td>2009</td>
<td>127</td>
<td>73</td>
<td>38.8</td>
<td>11.4</td>
<td>Placebo</td>
<td>8 wks</td>
<td>Clinical response 71% vs. 71%</td>
</tr>
<tr>
<td>Baumgart</td>
<td>2010</td>
<td>127</td>
<td>73</td>
<td>38.8</td>
<td>11.4</td>
<td>None</td>
<td>8 wks</td>
<td>Placebo</td>
</tr>
<tr>
<td>Sands</td>
<td>2012</td>
<td>149</td>
<td>52</td>
<td>39.0</td>
<td>12.0</td>
<td>Placebo</td>
<td>8 wks</td>
<td>Placebo</td>
</tr>
<tr>
<td>Musch</td>
<td>2005</td>
<td>91</td>
<td>32</td>
<td>38.0</td>
<td>14.0</td>
<td>Placebo</td>
<td>8 wks</td>
<td>Placebo</td>
</tr>
</tbody>
</table>

(Continued)
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Total enrolled</th>
<th>Active agent</th>
<th>Comparator</th>
<th>Study duration</th>
<th>Study end-point</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilg</td>
<td>2003</td>
<td>60</td>
<td>Pegylated interferon-alpha 0.5 mcg/kg</td>
<td>Placebo</td>
<td>12 wks</td>
<td>Induction remission</td>
<td>47% vs.</td>
</tr>
<tr>
<td>Nikolaus</td>
<td>2003</td>
<td>10</td>
<td>Interferon-beta-1a 22–88 mcg</td>
<td>Placebo</td>
<td>8 wks</td>
<td>Induction remission</td>
<td>50% vs.</td>
</tr>
<tr>
<td>Feagan</td>
<td>2005</td>
<td>181</td>
<td>Alpha4Beta7 Ab 0.5 mg/kg</td>
<td>Placebo</td>
<td>6 wks</td>
<td>Induction remission</td>
<td>33% vs.</td>
</tr>
<tr>
<td>Leiper</td>
<td>2011</td>
<td>24</td>
<td>Rituximab 1 g</td>
<td>Placebo</td>
<td>4 wks</td>
<td>Induction remission</td>
<td>18.8% vs.</td>
</tr>
</tbody>
</table>

Notes: Adalimumab 160 mg week 0, 80 mg week 2, then 40 mg every other week, *interquartile range.

Abbreviations: wks, weeks; SD, standard deviation.

Many studies the age range was much smaller. Based on the age range data alone, 2 studies did not include elderly patients.20,26 There were a total of 14 studies in which the estimated number of elderly patients could be calculated by adding 1 or 2 SD to the mean age, whichever provided the closest estimate to an elderly age. Using this method, approximately 16% of the study population had a mean age of 53.4 years (mean of ‘mean plus 1 SD’) or older. In most cases, a calculation of mean age plus 2 SD provided a closer approximation to an elderly age, with approximately 2.5% of the study population aged 66.9 years or older.

Efficacy of biological agents

Infliximab

Six RCTs have evaluated infliximab (IFX) for clinical improvement in patients with moderate to severely active UC. The primary outcome measure for these studies was induction of remission in 4 studies, clinical response in 1 and treatment failure in 1. Outcome assessment was performed at a range of 2–13 weeks. In an initial study by Sands, IFX was administered at doses ranging from 5 mg/kg to 20 mg/kg.36 Eight patients received IFX, of which half responded to therapy. No patients receiving placebo achieved remission. In a second placebo controlled trial, Probert found that remission rates were not statistically different.28 A 2004 study by Ochsenkuh showed IFX to be as effective as corticosteroids in the induction of remission;29 a similar study by Armuzzi corroborated these results.20 In the ACT-1 and ACT-2 trials completed by Rutgeerts et al, 121 patients in each of the two studies received IFX 5 mg/kg.30 In comparison to placebo, remission induction rates for IFX were 38.8% and 33.9% versus 14.9% and 5.7% respectively. These results were statistically significant. The overall age range for these studies was 20–63 when reported. Two studies did not include elderly patients based on the reported age ranges.20,26 The ACT-1 and ACT-2 trials reported mean age with SD.30 In the ACT-1 trial the mean age was 42.4 and the mean age plus 1 and 2 SD was 56.7 and 71.0, respectively. Based off of these estimations, the number of patients enrolled in the active arm of the study was 19 patients over the age of 56.7 and 3 patients over the age of 71.0. In the ACT-2 trial, the mean age was 40.5 and the mean age plus 1 and 2 SD was 53.6 and 66.7, respectively. Thus in the ACT-2 trial, 19 patients in the IFX group were
over the age of 53.6 and 3 patients were over the age of 66.7. Sands reported both the SD and age range. Based on this information the study contained one elderly patient. In Probert’s study, mean age was 41 with an interquartile range 35.5–50.5. There was no age subgroup analysis of the results in this study.

Adalimumab
Reinisch examined adalimumab (ADA) in moderate to severe UC. Three hundred-ninety patients were enrolled, 130 receiving ADA at the optimal dose. Induction of remission was achieved in 18.5%, compared to 9.2% for placebo. Sandborn also evaluated ADA in moderate to severe UC. In total, 494 patients were enrolled in this trial and 248 received ADA. Induction of remission was achieved in 18.5%, compared to 9.2% for placebo. Sandborn also evaluated ADA in moderate to severe UC. In total, 494 patients were enrolled in this trial and 248 received ADA. Induction and maintenance of remission were considered co-primary outcomes. At 8 weeks, induction of remission was 16.5% in the ADA group as compared to 9.3% in the placebo group. Maintenance of remission at 52 weeks was 9.3% versus 8.5%, respectively. The mean age for these two studies was 36.5 years and 39.6 years. The Reinisch study reported an age range of 18–75 years, but it did not report a SD of the mean; thus, no further age related information could be estimated. Sandborn et al reported a mean age of 41.2 years. Mean age plus 1 SD and 2 SD was 52.1 years, and 40 patients were older than 52.1 years. In this case mean age plus 2 SD was a closer estimate to an elderly age, 64.5 years. Using this calculation, 6 patients out of the 248 in the treatment arm were older than 64.5 years. There was no age subgroup analysis of the results in this study.

Tofacitinib
Sandborn evaluated tofacitinib in moderately to severely active UC. One hundred ninety-four patients were enrolled, 49 receiving tofacitinib 15 mg. Clinical response at 8 weeks was seen in 78% versus 42% for placebo. The mean age was 41.2. Mean age plus 1 SD and 2 SD was 54.7 and 68.2, respectively. This study contained 23 patients over the age of 54.7 and 4 patients over the age of 68.2. There was no age subgroup analysis of the results in this study.

Daclizumab
Van Assche studied daclizumab 2 mg/kg compared to placebo for the induction of remission in 159 patients with moderate UC. At eight weeks, remission rates were 7% and 10% respectively. The mean age was 42.6. The mean age plus 1 SD and 2 SD was 58.0 and 73.3 respectively. This study contained 8 patients over the age of 58.0 and 1 patient over the age of 73.3. There was no age subgroup analysis of the results in this study.

Visilizumab
Sandborn studied visilizumab in severe refractory UC. One hundred twenty-seven patients were enrolled and 84 received visilizumab. Remission rates at day 45 were 8% for visilizumab and 9% for placebo. The results were not statistically significant. Baumgart examined visilizumab at varying doses in severe, steroid refractory UC. Seventy-three patients were studied. Remission induction rates at day 30 were 71% at a dose of 12.5 mcg/kg. No placebo was used for comparison. Both studies reported mean age and SD. Baumgart et al reported a mean age of 38.8. The mean age plus 1 and 2 SD was 50.2 and 61.6, respectively. The study contained 9 patients over the age 50.2 and 1 patient over the age 61.6. In the Sandborn trial, the mean age was 40.4 years, with a calculated mean age plus 1 and 2 SD of 53.3 and 66.2, respectively. The study contained 13 patients over the age of 53.3 years and 2 patients over the age of 66.2 years in the active treatment group. There was no age subgroup analysis of the results in this study.

Basiliximab
Sands studied basiliximab versus placebo in patients with moderate to severe UC. In this study, 149 patients were enrolled and 52 received basiliximab 40 mg. At eight weeks, induction of remission in patients receiving basiliximab was 29% versus 28% in those receiving placebo. The mean age was 39.0. The mean age plus 1 SD and 2 SD was 51.0 and 63.0, respectively. This study contained 8 patients over the age of 51.0 and 1 patient over the age 63.0. There was no age subgroup analysis of the results in this study.

Abatacept
Sandborn found that after 12 weeks of therapy, abatacept achieved clinical remission in 19% versus 29.5% in those treated with placebo. The mean age of the abatacept group was 42.1. The mean age plus 1 SD and 2 SD was 56.5 and 69.1, respectively. This
study contained 22 patients over the age of 55.6 and 3 patients over the age of 69.1. There was no age subgroup analysis of the results in this study.

Interferon

Four studies evaluated interferon for the treatment of active UC. None showed any statistically significant clinical benefit. Nikolaus, Musch and Pena-Rossi studied interferon beta-1 and Tilg examined pegylated interferon alpha.24,25,27,37 The mean age in these studies ranged was 36.9–42.2. One interferon-beta-1a study reported an age range of 32–68.21 Two studies, one for interferon-beta-1a and one for pegylated interferon-alpha, reported SD.27,37 The mean age plus 1 SD ranged from 50.1 to 53.9. The mean age plus 2 SD was 56.3 and 67.9. One study, reported only the mean age of 38.24 There was no age subgroup analysis of the results in this study.

Alpha4beta7 integrin

Feagan studied alpha4beta7 integrin for the induction of remission of moderate to severely active UC.22 One hundred eighty-one patients were enrolled with 58 receiving 0.5 mg/kg. At 6 weeks, remission rates were 33% in comparison to 14% receiving placebo. The mean age was 41.6. The mean age plus 1 SD and 2 SD was 56.3 and 71.0, respectively. This study contained 9 patients over the age of 56.3 and 1 patient over the age of 71.0. There were no results reported by age subgroup analyses.

Rituximab

Leiper studied rituximab for the induction of remission.23 Twenty-four patients were enrolled and 16 received rituximab. At 4 weeks, 18.8% of patients were in remission versus 12.5% receiving placebo. The mean age was 37.0. The mean age plus 1 SD and 2 SD was 52.0 and 67.0, respectively. This study contained 3 patients over the age of 52.0 and no patients over the age of 67.0. Again, there was no age subgroup analysis of the results in this study.

Safety of biological agents

All 20 RCTs reported side effects and adverse events. These measures were not the primary outcome in any of the studies, and were therefore exploratory findings. In general, the study agents were well tolerated. No study reported age related analysis with respect to safety, tolerability, AE, or withdrawal rates.

Immunosuppressants

Immunosuppressant age summation

Twenty studies were included in this analysis and are summarized in Table 2.39–58 All 20 studies reported a mean age. The composite mean age was 38.5 years, with a mean range of 30.5 to 46.4 years. Nine studies reported SD of the mean age, 1 reported SEM, 5 reported age range, and 5 reported both the SD/SEM and age range. When reported, the overall age range was 15–75, but in many studies, the age range was much smaller. Based on age range alone, 2 studies did not include elderly patients.47,48 There were a total of 15 studies in which the estimated number of elderly patients could be calculated by adding 1 or 2 SD to the mean age, whichever provided the closest estimate to an elderly age. Using this method, approximately 16% of the study population had a mean age of 52.1 years (mean of ‘mean plus 1 SD’) or older. In most cases, a calculation of mean age plus 2 SD provided a closer approximation to an elderly age, with 2.5% of the study population aged 65.3 years (mean of ‘mean plus 2 SD’) or older.

Efficacy of Immunosuppressant agents

Corticosteroid

There were 10 studies evaluating the efficacy of corticosteroids for the treatment of UC. Rhodes et al found that in patients with active UC, prednisolone metasulfobenzoate achieved remission in 46% compared to 41% of patients receiving oral prednisolone after 8 weeks of treatment.52 The mean age was 44.5. The mean age plus 1 SD and 2 SD was 58.7 and 72.9, respectively. This study contained 9 patients over the age of 58.7 and 1 patient over the age of 72.9. Bossa et al found that in the treatment of severe UC attacks, there was no difference in clinical response between treatment with continuous infusion and treatment with bolus administration of intravenous methylprednisolone.40 The mean age in this study was 39.2. The mean age plus 1 SD and 2 SD was 53.9 and 68.6, respectively. This study contained 5 patients over the age of 53.9 and 1 patient over the age of 68.6. Sood et al found that in patients with moderately active UC, patients receiving prednisolone had a better response (63.2%) compared to methylprednisolone.
Table 2.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Total enrolled</th>
<th>Active agent</th>
<th>Comparator Results</th>
<th>Primary end-point</th>
<th>Study duration</th>
<th>Active agent vs. comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroid</td>
<td>Rhodes</td>
<td>2008 181</td>
<td>Prednisolone metasulfobenzozoate 40 mg</td>
<td>Prednisolone</td>
<td>Induction</td>
<td>8 wks</td>
<td>46% vs. 41%</td>
</tr>
<tr>
<td>Bossa</td>
<td>2007 66</td>
<td>Methylprednisolone 1 mg/kg, continuous</td>
<td>Methylprednisolone, bolus</td>
<td>Complete response</td>
<td>1 wks</td>
<td>50% vs. 50%</td>
<td></td>
</tr>
<tr>
<td>Sood</td>
<td>2002 40</td>
<td>Methylprednisolone acetate 80 mg IM</td>
<td>Prednisolone</td>
<td>Therapeutic response</td>
<td>1 wks</td>
<td>23.8% vs. 63.2%</td>
<td></td>
</tr>
<tr>
<td>Hawthorne</td>
<td>1993 205</td>
<td>Fluticasone propionate 5 mg</td>
<td>Prednisolone</td>
<td>Investigator's overall assessment</td>
<td>4 wks</td>
<td>25.5% vs. 29%</td>
<td></td>
</tr>
<tr>
<td>Meyers</td>
<td>1983 66</td>
<td>Hydrocortisone 100 mg</td>
<td>ACTH</td>
<td>Treatment success</td>
<td>10 days</td>
<td>53% vs. 25%</td>
<td></td>
</tr>
<tr>
<td>Budesonide</td>
<td>D’Haens</td>
<td>2010 32</td>
<td>Budesonide-MMX 9 mg</td>
<td>Placebo</td>
<td>Induction</td>
<td>4 wks</td>
<td>47% vs. 33%</td>
</tr>
<tr>
<td>Lofberg</td>
<td>1996 72</td>
<td>Budesonide taper</td>
<td>Prednisolone taper</td>
<td>Endoscopic remission</td>
<td>4 wks</td>
<td>12.9% vs. 16.7%</td>
<td></td>
</tr>
<tr>
<td>Beclometasone</td>
<td>Campieri</td>
<td>2003 177</td>
<td>Beclomethasone dipropionate 5 mg</td>
<td>5-ASA</td>
<td>Induction</td>
<td>4 wks</td>
<td>63% vs. 62.5%</td>
</tr>
<tr>
<td>Rizzello</td>
<td>2002 119</td>
<td>Beclomethasone dipropionate 5 mg</td>
<td>5-ASA</td>
<td>Induction remission</td>
<td>4 wks</td>
<td>58.9% vs. 34.4%</td>
<td></td>
</tr>
<tr>
<td>Rizzello</td>
<td>2001 57</td>
<td>Beclomethasone dipropionate 5 mg</td>
<td>5-ASA</td>
<td>Responders</td>
<td>4 wks</td>
<td>47.4% vs. 36.8%</td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td>Oren</td>
<td>1996 67</td>
<td>Methotrexate 12.5 mg</td>
<td>Placebo</td>
<td>Clinical remission</td>
<td>36 wks</td>
<td>46.7% vs. 48.6%</td>
</tr>
<tr>
<td>MMF</td>
<td>Orth</td>
<td>2000 24</td>
<td>Mycophenolate Mofetil 20 mg/kg</td>
<td>AZA</td>
<td>Maintenance remission</td>
<td>52 wks</td>
<td>88% vs. 100%</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>Ogata</td>
<td>2006 63</td>
<td>Tacrolimus trough 10–15 ng/mL</td>
<td>Placebo</td>
<td>Clinical improvement</td>
<td>2 wks</td>
<td>68.4% vs. 10%</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>Van Assche</td>
<td>2003 73</td>
<td>Cyclosporine 4 mg/kg</td>
<td>Cyclosporine 2 mg/kg</td>
<td>Clinical response</td>
<td>8 days</td>
<td>84.2% vs. 85.7%</td>
</tr>
<tr>
<td>D’Haens</td>
<td></td>
<td>Cyclosporine 4 mg/kg</td>
<td>Methyprednisolone</td>
<td>Clinical improvement</td>
<td>8 days</td>
<td>64% vs. 53%</td>
<td></td>
</tr>
<tr>
<td>Lichtiger</td>
<td>1994 20</td>
<td>Cyclosporine 4 mg/kg</td>
<td>Placebo</td>
<td>Clinical response</td>
<td>2 wks</td>
<td>82% vs. 0%</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Total enrolled</th>
<th>Active agent mean age</th>
<th>Comparator mean age</th>
<th>Study duration</th>
<th>Comparator Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ardizzone</td>
<td>2006</td>
<td>72</td>
<td>Azathioprine 2 mg/kg</td>
<td>Azathioprine</td>
<td>24 wks</td>
<td>Maintenance remission</td>
</tr>
<tr>
<td>Mantzaris</td>
<td>2004</td>
<td>70</td>
<td>Azathioprine 2.2 mg/kg</td>
<td>Azathioprine + 5-ASA</td>
<td>2 years</td>
<td>81% and 82%</td>
</tr>
<tr>
<td>Sood</td>
<td>2002</td>
<td>35</td>
<td>Azathioprine 2.5 mg/kg + coricosteroid and sulfasalazine</td>
<td>Corticosteroids and sulfasalazine</td>
<td>52 wks</td>
<td>Placebo + sulfasalazine and prednisolone</td>
</tr>
<tr>
<td>Sood</td>
<td>2000</td>
<td>50</td>
<td>Azathioprine 1 mg/kg + sulfasalazine and prednisolone</td>
<td>Placebo + sulfasalazine and prednisolone</td>
<td>52 wks</td>
<td>56% vs. 40%</td>
</tr>
</tbody>
</table>

Abbreviations
- **wks**: weeks
- **SD**: standard deviation
- **5-ASA**: 5-Aminosalicylic Acid
- **AZA**: Azathioprine
- **Coricosteroids**: Corticosteroids
- **Sulfasalazine**: Sulfasalazine

Intramuscularly (23.8%). The mean age was 31.7. The mean age plus 1 SD and 2 SD was 46.4 and 61.1, respectively. This study contained 3 patients over the age of 46.4 and 1 patient over the age of 61.1. Hawthorne et al compared oral fluticasone to prednisolone taper in patients with active left sided or pancolitis. Clinical remission, as judged by the investigator’s overall assessment, was seen in 25.5% of fluticasone patients and 29% receiving placebo. The mean age was 41 and the age range 18–72 years. SD was not reported and further age related information could not be ascertained. The study by Meyers et al found that hydrocortisone treatment for 10 days achieved treatment success in 53% of patients versus 25% of patients treated with ACTH. This study did not include any elderly patients based on mean age of 38.6 and the age range 21–58 years.

D’Haens et al evaluated oral budesonide compared to placebo in patients with active left-sided UC. Thirty-two patients were enrolled and 17 received budesonide. At 4 weeks, remission induction was 47% versus 33% respectively. This result was not statistically significant. The mean age was 44.5. The mean age plus 1 SD and 2 SD was 57.1 and 69.7, respectively. In the budesonide group, there were 3 patients over the age of 57.1 and no patients over the age of 69.7 years. There were 3 studies evaluating beclomethasone as compared to 5-ASA, for the treatment of mild to moderately active UC. The Campieri et al and Rizzello et al studies found no difference between the 2 medications with similar remission rates; however, Rizzello et al found that at 4 weeks, patients treated with beclomethasone achieved clinical remission in 58.9% versus 34.4% of patients treated with the 5 ASA agent. The mean age for these 3 studies was 40.3 years. Based on mean age plus SD, there were no elderly patients in the Rizzello 2001 study, and less than 16% in the other two studies. None of these corticosteroid studies reported results by age subgroup analyses.

Methotrexate
Oren et al studied methotrexate (MTX) versus placebo in patients with chronic active UC. Sixty-seven patients were enrolled and 30 received MTX. At 36 weeks, clinical remission was seen in 46.7% of MTX patients versus 48.6% for those receiving placebo. The authors concluded that MTX was not
Ulcerative colitis in the elderly

Clinical Medicine Insights: Geriatrics 2013:6

beneficial in induction of remission. The mean age was 38.3. The mean age plus 1 SD and 2 SD was 53.2 and 68.1, respectively. This study represented 5 patients over the age of 53.2 years and 1 patient over the age of 68.1 years. There were no results reported by age subgroup analyses.

Mycophenolate mofetil
Orth et al evaluated mycophenolate mofetil (MMF) as compared to azathioprine (AZA) in moderate to severe UC. Fifty-one patients were enrolled and 12 received MMF. Remission rates at one year were 88% (MMF) and 100% (AZA). These results were statistically significant. The mean age was 42.4 and range 23–70. No SD was reported. There were no results reported by age subgroup analyses.

Tacrolimus
Ogata et al reported that at 2 weeks, tacrolimus given at a dose to achieve a high trough (10–15 ng/mL) induced remission in 68.4% of patients as compared to 10% in patients on placebo. The mean age was 33.3. The mean age plus 1 SD and 2 SD was 43.6 and 53.9, respectively. This study contained 3 patients over the age of 43.6 and no elderly patients. There were no results reported by age subgroup analyses.

Cyclosporine
Van Assche et al studied 2 doses of cyclosporine (2 mg/kg and 4 mg/kg) in the acute treatment of severe UC. Seventy-three patients were enrolled. Clinical response at 8 days was seen in 84% and 85% in the high and low dose groups, respectively. The mean age was 39. The mean age plus 1 SD and 2 SD was 53.0 and 67.0, respectively. This study contained 6 patients over the age of 53.0 and 1 patient over the age of 67.0. D’Haens et al studied cyclosporine in comparison to intravenous corticosteroids for severe UC. Thirty patients were enrolled and 14 received cyclosporine. Clinical improvement at day 8 was seen in 64% of patients on cyclosporine versus 53% on placebo. These results were not statistically significant. The mean age was 36.7. The mean age plus 1 SD and 2 SD was 47.2 and 57.7, respectively. This study contained 2 patients over the age of 47.2 and no elderly patients. Lichtiger et al studied cyclosporine versus placebo in patients with severe steroid refractory UC. Twenty patients were studied and 11 received cyclosporine. At two weeks, clinical response was seen in 82% of patients on cyclosporine versus 0% on placebo. The mean age was 34 and age range 18–60. There were no results reported by age subgroup analyses.

Azathioprine
Ardizzzone et al and Mantzaris et al both studied AZA in comparison to 5-ASA in patients with steroid dependent UC. In Ardizzzone et al’s study, seventy-two patients were enrolled and 36 received AZA. At 6 six months, maintenance of remission was 53% versus 21%. These results were statistically significant. The mean age was 43.0. The mean age plus 1 SD and 2 SD was 57.0 and 71.0, respectively. This study contained 6 patients over the age of 57.0 and 1 patient over the age of 71.0. Mantzaris et al enrolled seventy patients and 34 received AZA. Maintenance of remission at two years was 81% versus 82%. The mean age was 35.0 and range 20–55. No elderly patients were included. Sood et al performed 2 similar studies in 2000 and 2002, comparing a 5-ASA/corticosteroid regimen with and without AZA for the treatment of severe UC. Both studies showed results favoring the AZA/5-ASA/corticosteroid regimen over the 5-ASA/corticosteroid only regimen. Mean ages for the two studies were 39.6 years and 35.2 years, respectively. In the 2000 study, there was 1 patient estimated to be over the age of 58 and in the 2002 study, there were no patients over the age of 67.7, with only 3 over the age of 53.7. None of these AZA studies looked at results by age subgroup analyses.

Safety of Immunosuppressant agents
All 20 IS RCTs reported side effects and adverse events. As in the BA studies, these measures were not the primary outcomes. Study agents were generally well tolerated. No study reported age related analysis with respect to safety, tolerability, AE or withdrawal rates.

5-ASA
5-ASA age summation
Seventy-two studies were included in this analysis and are summarized in Table 3. Of these, 65 reported a mean age, 5 reported a median age, and 2 reported neither; instead these 2 specified age range by subgroups. The composite mean age (counting the
Table 3.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Total enrolled</th>
<th>Active agent</th>
<th>Active agent</th>
<th>N</th>
<th>Mean/median age</th>
<th>SD</th>
<th>Age range</th>
<th>Mean age +1 SD</th>
<th>N ≥ mean +1 SD</th>
<th>Mean age +2 SD</th>
<th>N ≥ mean +2 SD</th>
<th>Study reported "elderly" age range</th>
<th>N elderly (%)</th>
<th>Comparator</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction–mesalamine</td>
<td></td>
</tr>
<tr>
<td>Gross</td>
<td>2011</td>
<td>343</td>
<td>Salofalk 3 g once daily</td>
<td>Salofalk 3 g once daily</td>
<td>166</td>
<td>43.5</td>
<td>14.1</td>
<td>18–75</td>
<td>57.6</td>
<td>27</td>
<td>71.7</td>
<td>4</td>
<td>Budesonide 9 mg daily</td>
<td>Clinical remission</td>
<td>8 wks</td>
<td>54.8% vs. 39.5%</td>
</tr>
<tr>
<td>Hiwatashi</td>
<td>2011</td>
<td>123</td>
<td>Mesalazine 4 g/d (2 g BID)</td>
<td>Mesalazine 4 g/d (2 g BID)</td>
<td>59</td>
<td>NR</td>
<td>NR</td>
<td>15–64</td>
<td>60–64</td>
<td>2 (3.4%)</td>
<td>Clinical response</td>
<td>8 wks</td>
<td>76.3% vs. 45.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lichtenstein</td>
<td>2011</td>
<td>391</td>
<td>Asacol 4.8 g/d (1600 mg TID)</td>
<td>Asacol 4.8 g/d (1600 mg TID)</td>
<td>213</td>
<td>43.4</td>
<td>NR</td>
<td>18–75</td>
<td>64–75</td>
<td>19 (8.9%)</td>
<td>Mucosal healing</td>
<td>6 wks</td>
<td>80% vs. 68%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ito</td>
<td>2010</td>
<td>229</td>
<td>Asacol 3.6 g/d (1.2 g TID)</td>
<td>Asacol 3.6 g/d (1.2 g TID)</td>
<td>64</td>
<td>41.6</td>
<td>10.4</td>
<td>16–64</td>
<td>52.0</td>
<td>10</td>
<td>62.4</td>
<td>2</td>
<td>Asacol 2.4 g/d (0.8 g TID), Pentasa 2.25 g/d (0.75 g TID) and placebo</td>
<td>Clinical remission</td>
<td>8 wks</td>
<td>45.3% vs. 30.3% (Asacol 2.4 g/d), 28.6% (Pentasa 2.25 g/d) and 9.4% (placebo)</td>
</tr>
<tr>
<td>Sandbom</td>
<td>2009</td>
<td>672</td>
<td>Asacol 4.8 g/d (1.6 g TID)</td>
<td>Asacol 4.8 g/d (1.6 g TID)</td>
<td>389</td>
<td>44.1</td>
<td>NR</td>
<td>18–75</td>
<td>65–75</td>
<td>34 (8.7%)</td>
<td>Treatment success</td>
<td>6 wks</td>
<td>70% vs. 66%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kruis</td>
<td>2009</td>
<td>381</td>
<td>Salofalk 3 g once daily</td>
<td>Salofalk 3 g once daily</td>
<td>191</td>
<td>41.8</td>
<td>14.0</td>
<td>18–75</td>
<td>55.8</td>
<td>31</td>
<td>69.8</td>
<td>5</td>
<td>Salofalk 1 g TID</td>
<td>Clinical remission</td>
<td>8 wks</td>
<td>79.1% vs. 75.7%</td>
</tr>
<tr>
<td>Hanauer</td>
<td>2007</td>
<td>301</td>
<td>Asacol 4.8 g/d (1.6 g TID)</td>
<td>Asacol 4.8 g/d (1.6 g TID)</td>
<td>147</td>
<td>45.9</td>
<td>NR</td>
<td>18–75</td>
<td>65–75</td>
<td>14 (9.5%)</td>
<td>Treatment success</td>
<td>6 wks</td>
<td>56% vs. 51%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lichtenstein</td>
<td>2007</td>
<td>280</td>
<td>Lialda 4.8 g daily</td>
<td>Lialda 4.8 g daily</td>
<td>89</td>
<td>41.8</td>
<td>13.6</td>
<td>≥18</td>
<td>55.4</td>
<td>14</td>
<td>69.0</td>
<td>2</td>
<td>Lialda 2.4 g/d (1.2 g BID) and placebo</td>
<td>Complete remission</td>
<td>8 wks</td>
<td>29.2% vs. 34.1% (Lialda 1.2 g BID) and 12.9% (placebo)</td>
</tr>
<tr>
<td>Kamm</td>
<td>2007</td>
<td>343</td>
<td>Lialda 4.8 g daily</td>
<td>Lialda 4.8 g daily</td>
<td>85</td>
<td>44.6</td>
<td>13.1</td>
<td>≥18</td>
<td>57.7</td>
<td>14</td>
<td>70.9</td>
<td>2</td>
<td>Lialda 2.4 g/d, Asacol 2.4 g/d (0.8 g TID) and placebo</td>
<td>Complete remission</td>
<td>8 wks</td>
<td>41.2% vs. 40.5% (Lialda 2.4 g/d, 32.6% (Asacol 2.24 g/d) and 22.1% (placebo)</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Treatment</td>
<td>n</td>
<td>Comparator</td>
<td>n</td>
<td>Median</td>
<td>Range</td>
<td>Mean</td>
<td>Range</td>
<td>Mean</td>
<td>Study Duration</td>
<td>Remission Rate</td>
<td>comparator</td>
<td>remission Rate</td>
<td>Remission Rate</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>---</td>
<td>------------</td>
<td>---</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>----------------</td>
<td>---------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Gibson</td>
<td>2006</td>
<td>Mesalazine Eudragit L 3 g/d (1 g TID)</td>
<td>131</td>
<td>40.0</td>
<td>NR</td>
<td>18–69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 wks</td>
<td>69% vs. 69%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D’Haens</td>
<td>2006</td>
<td>Lialdra 2.4 g/d</td>
<td>14</td>
<td>39.0</td>
<td>NR</td>
<td>23–74</td>
<td></td>
</tr>
<tr>
<td>Hanauer</td>
<td>2005</td>
<td>Asacol 4.8 g/d (1.6 g TID)</td>
<td>129</td>
<td>42.0</td>
<td>NR</td>
<td>18–75</td>
<td>3</td>
<td>65–75</td>
<td>11 (8.5%)</td>
<td>Asacol 2.4 g/d (0.8 g TID)</td>
<td>Treatment 6 wks</td>
<td>success 72% vs. 59%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prantera</td>
<td>2005</td>
<td>Lialdra 3.6 g/d (1.2 g TID)</td>
<td>40</td>
<td>41.1</td>
<td></td>
<td>14.4 ≥18</td>
<td>55.5</td>
<td>6</td>
<td>69.9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forbes</td>
<td>2005</td>
<td>Ipocol 2.4 g/d (0.8 g TID)</td>
<td>46</td>
<td>47.9</td>
<td></td>
<td>15.3 ≥18</td>
<td>63.2</td>
<td>7</td>
<td>78.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marakhouski</td>
<td>2005</td>
<td>Mesalazine Eudragit L pellets 1.5 g/d (0.5 g TID)</td>
<td>114</td>
<td>41.9</td>
<td>NR</td>
<td>18–70</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raedler</td>
<td>2004</td>
<td>Mesalazine micropellets 3 g/d</td>
<td>179</td>
<td>NR</td>
<td></td>
<td>18–75</td>
<td>4</td>
<td>≥65</td>
<td>10 (5.6%)</td>
<td>Mesalazine tablets 3 g/d</td>
<td>Clinical 8 wks</td>
<td>remission 67% vs. 62.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kruis</td>
<td>2003</td>
<td>Mesalamine Eudragit L pellets 4.5 g/d (1.5 g TID)</td>
<td>106</td>
<td>41.5</td>
<td>NR</td>
<td>19–69</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paoluzi</td>
<td>2002</td>
<td>Asacol po 2.4 g/d + Asacol enema 2 g/d × 4 wks</td>
<td>73</td>
<td>42.0</td>
<td></td>
<td>16.0 ≥18</td>
<td>58.0</td>
<td>12</td>
<td>74.0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D’Haens</td>
<td>2006</td>
<td>Pentasa 4 g/d (2 g BiD)</td>
<td>227</td>
<td>43.0</td>
<td>NR</td>
<td>17–77</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Total enrolled</th>
<th>Active agent</th>
<th>Active agent</th>
<th>Comparator</th>
<th>Results</th>
<th>Primary outcome</th>
<th>Study duration</th>
<th>Results of primary outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vecchi</td>
<td>2001</td>
<td>130</td>
<td>Salofalk</td>
<td>4 g/d</td>
<td>Clinical remission</td>
<td>6 wks</td>
<td>82% vs. 87%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Munakata</td>
<td>1995</td>
<td>118</td>
<td>Pentasa 1.5 g/d (0.5 g TID)</td>
<td>4 g/d po (2 g BID)</td>
<td>Sulfasalazine 3 g/d (1 g TID)</td>
<td>Clinical remission</td>
<td>4 wks</td>
<td>63% vs. 62%</td>
<td></td>
</tr>
<tr>
<td>Hanauer</td>
<td>1993</td>
<td>374</td>
<td>Pentasa 2 g/d (0.5 g QID)</td>
<td>34.0</td>
<td>Clinical remission</td>
<td>6 wks</td>
<td>57% vs. 59% (Pentasa 1 g QID) and 36% (Placebo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sninsky</td>
<td>1991</td>
<td>158</td>
<td>Asacol 1.6 g/d</td>
<td>53</td>
<td>Clinical remission</td>
<td>6 wks</td>
<td>43% vs. 49% (Asacol 2.4 g/d and 23% (Placebo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rachmilewitz</td>
<td>1989</td>
<td>220</td>
<td>Mesasal 1.5 g/d</td>
<td>115</td>
<td>Clinical remission</td>
<td>8 wks</td>
<td>71% vs. 66%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riley</td>
<td>1988</td>
<td>61</td>
<td>Asacol 1200 mg BID</td>
<td>21</td>
<td>Clinical remission</td>
<td>4 wks</td>
<td>81% vs. 75% (Asacol 400 mg and Salazopyrin 1 g BID)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schroeder</td>
<td>1987</td>
<td>88</td>
<td>Asacol 4.8 g/d (1.2 g QID)</td>
<td>38</td>
<td>Placebo</td>
<td>Clinical remission</td>
<td>6 wks</td>
<td>24% vs. 5%</td>
<td></td>
</tr>
<tr>
<td>Maintenance-mesalamine</td>
<td></td>
<td></td>
<td>Salofalk 3 g once daily</td>
<td>217</td>
<td>Salofalk 1.5 g daily and 0.5 g TID</td>
<td>Clinical remission</td>
<td>52 wks</td>
<td>75% vs. 61% (1.5 g daily) and 69% (0.5 g TID)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Treatment</td>
<td>Duration</td>
<td>Age</td>
<td>Response</td>
<td>Primary Outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>---</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lichtenstein</td>
<td>2010</td>
<td>Asacol 1.6–2.4 g/d daily</td>
<td></td>
<td>44.0–61</td>
<td>61.0</td>
<td>33.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandborn</td>
<td>2010</td>
<td>Placebo</td>
<td></td>
<td>75.0</td>
<td>5.0</td>
<td>78.9% vs. 58.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ito</td>
<td>2010</td>
<td>Asacol 2.4 g/d (0.8 g TID)</td>
<td></td>
<td>12.0–64</td>
<td>55.4</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dignass</td>
<td>2009</td>
<td>Pentasa 2 g daily</td>
<td></td>
<td>15.0–80</td>
<td>63.7</td>
<td>28.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prantera</td>
<td>2009</td>
<td>Lialda 2.4 g once daily</td>
<td></td>
<td>14.1–74</td>
<td>59.6</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamm</td>
<td>2008</td>
<td>Lialda 1.2 g daily</td>
<td></td>
<td>21.0–68</td>
<td>54.5</td>
<td>36.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paoluzi</td>
<td>2005</td>
<td>Asacol 2.4 g/d (0.8 g TID)</td>
<td></td>
<td>14.2–18</td>
<td>61.9</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane</td>
<td>2003</td>
<td>Mesalamine “conventional dosing” (BID or TID)</td>
<td></td>
<td>13.4 NR</td>
<td>59.6</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanauer</td>
<td>1996</td>
<td>Asacol 1.6 g/d</td>
<td></td>
<td>13.5–75</td>
<td>55.6</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ardizzone</td>
<td>1995</td>
<td>Claversal 0.5 g BID</td>
<td></td>
<td>NR 18–61</td>
<td>32.0</td>
<td>44.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miner</td>
<td>1995</td>
<td>Placebo</td>
<td></td>
<td>11.0–18</td>
<td>50.0</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fockens</td>
<td>1995</td>
<td>Placebo</td>
<td></td>
<td>14.5–74</td>
<td>59.5</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutgeerts</td>
<td>1989</td>
<td>Claversal 0.75 g/d</td>
<td></td>
<td>13.5–72</td>
<td>55.0</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulder</td>
<td>1988</td>
<td>Placebo</td>
<td></td>
<td>15.6–79</td>
<td>58.9</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Total enrolled</td>
<td>Active agent</td>
<td>Active agent</td>
<td>Study reported “elderly” (%)</td>
<td>Comparator</td>
<td>Results</td>
<td>Primary outcome</td>
<td>Study duration</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Riley</td>
<td>1988</td>
<td>100</td>
<td>Asacol pre-trial dose of sulfasalazine converted, where 1 g SSZ = 400 mg 5ASA</td>
<td>48 42.1 15.5 NR 57.6 8 73.1 1</td>
<td>Sulphasalazine 5ASA continued at pre-trial dose</td>
<td>Relapse rate</td>
<td>48 wks</td>
<td>37.5% vs. 38.6%</td>
<td></td>
</tr>
<tr>
<td>Dew</td>
<td>1983</td>
<td>67</td>
<td>5ASA, Eudragit-S 2.4–4.4 g/d</td>
<td>32 48.6 16.2 NR 64.8 5 81.0 1</td>
<td>Sulphasalazine 2–4 g/d</td>
<td>Relapse rate</td>
<td>36 wks</td>
<td>22% vs. 20%</td>
<td></td>
</tr>
<tr>
<td>Dew</td>
<td>1982</td>
<td>72</td>
<td>5ASA, Eudragit-S, pre-trial dose of sulfasalazine converted, where 1 g SSZ = 400 mg 5ASA</td>
<td>32 44.9 15.3 NR 60.2 5 75.5 1</td>
<td>Sulphasalazine continued at pre-trial dose</td>
<td>Relapse rate</td>
<td>16 wks</td>
<td>26% vs. 18%</td>
<td></td>
</tr>
</tbody>
</table>

Induction–olerazine

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Total enrolled</th>
<th>Active agent</th>
<th>Active agent</th>
<th>Study reported “elderly” (%)</th>
<th>Comparator</th>
<th>Results</th>
<th>Primary outcome</th>
<th>Study duration</th>
<th>Results of primary outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruis</td>
<td>1998</td>
<td>172</td>
<td>Dipentum 3 g/d (1 g TID)</td>
<td>88 41.9 14.7 18–75 56.6 14 71.3 2</td>
<td>Mesalazine, Eudragit-L 3 g/d (1 g TID)</td>
<td>Endoscopic remission</td>
<td>12 wks</td>
<td>52.2% vs. 48.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinberg</td>
<td>1990</td>
<td>15</td>
<td>Olsalazine 750 mg QID</td>
<td>7 37.0 NR 18–75</td>
<td>Placebo</td>
<td>Clinical response</td>
<td>4 wks</td>
<td>57% vs. 25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feurle</td>
<td>1989</td>
<td>105</td>
<td>Dipentum 2 g/d (500 mg QID)</td>
<td>52 42.9 15.8 18–75 58.7 8 74.5 1</td>
<td>Placebo</td>
<td>Endoscopic remission</td>
<td>4 wks</td>
<td>52.2% vs. 48.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rao</td>
<td>1989</td>
<td>39</td>
<td>Olsalazine 2 g/d (500 mg QID)</td>
<td>20 46.0 NR 19–77</td>
<td>Sulphasalazine 3 g/d (750 mg QID)</td>
<td>Clinical response</td>
<td>4 wks</td>
<td>89% vs. 77%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ewe</td>
<td>1988</td>
<td>41</td>
<td>Dipentum 1.5 g/d</td>
<td>20 42.9 17.7 22–73 60.6 3 78.3 1</td>
<td>Sulphasalazine 3 g/d</td>
<td>Clinical response</td>
<td>4 wks</td>
<td>55% vs. 37.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willoughby</td>
<td>1988</td>
<td>56</td>
<td>Dipentum 3 g/d</td>
<td>26 41.0 NR 22–68</td>
<td>Sulphasalazine 3 g/d</td>
<td>Clinical response</td>
<td>5 wks</td>
<td>57% vs. 68%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Treatment</td>
<td>n</td>
<td>Range of Ages</td>
<td>remission Rate</td>
<td>Comparator</td>
<td>n</td>
<td>Range of Ages</td>
<td>remission Rate</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>---</td>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
<td>---</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Meyers</td>
<td>1988</td>
<td>Dipentum 3 g/d</td>
<td>15</td>
<td>43.0</td>
<td>12.7</td>
<td>22–61</td>
<td>55.7</td>
<td>2</td>
<td>68.4</td>
<td>0</td>
</tr>
<tr>
<td>Hetzel</td>
<td>1988</td>
<td>Dipentum 1 g BID</td>
<td>15</td>
<td>45.0</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selby</td>
<td>1985</td>
<td>Olsalazine 2 g/d (500 mg QID)</td>
<td>20</td>
<td>42.0</td>
<td>NR</td>
<td>19–67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kruis</td>
<td>1995</td>
<td>Olsalazine 2 g/d (666 mg TID)</td>
<td>35</td>
<td>40.0</td>
<td>NR</td>
<td>16–72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilsson</td>
<td>1995</td>
<td>Olsalazine 1 g/d (500 mg BID)</td>
<td>161</td>
<td>41.8</td>
<td>11.9</td>
<td>19–69</td>
<td>53.7</td>
<td>26</td>
<td>65.6</td>
<td>4</td>
</tr>
<tr>
<td>Travis</td>
<td>1994</td>
<td>Dipentum 2 g/d</td>
<td>62</td>
<td>49.0</td>
<td>12.0</td>
<td>NR</td>
<td>61.0</td>
<td>73.0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Courteny</td>
<td>1992</td>
<td>Dipentum 500 mg BID</td>
<td>50</td>
<td>40.7</td>
<td>NR</td>
<td>16–72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kälerich</td>
<td>1992</td>
<td>Dipentum 500 mg BID</td>
<td>114</td>
<td>41.4</td>
<td>NR</td>
<td>20–79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rijk</td>
<td>1992</td>
<td>Olsalazine 1 g BID</td>
<td>23</td>
<td>36.0</td>
<td>NR</td>
<td>16–76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jewell</td>
<td>1988</td>
<td>Olsalazine 500 mg BID</td>
<td>82</td>
<td>49.0</td>
<td>NR</td>
<td>18–75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maintenance–Olsalazine

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Treatment</th>
<th>n</th>
<th>Range of Ages</th>
<th>Remission Rate</th>
<th>Comparator</th>
<th>n</th>
<th>Range of Ages</th>
<th>Remission Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruis</td>
<td>1995</td>
<td>Olsalazine 2 g/d (500 mg BID)</td>
<td>35</td>
<td>40.0</td>
<td>NR</td>
<td>16–72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilsson</td>
<td>1995</td>
<td>Olsalazine 2 g/d (1 g BID)</td>
<td>161</td>
<td>41.8</td>
<td>11.9</td>
<td>19–69</td>
<td>53.7</td>
<td>26</td>
<td>65.6</td>
</tr>
<tr>
<td>Travis</td>
<td>1994</td>
<td>Dipentum 2 g/d</td>
<td>62</td>
<td>49.0</td>
<td>12.0</td>
<td>NR</td>
<td>61.0</td>
<td>73.0</td>
<td>2</td>
</tr>
</tbody>
</table>

Induction–Balsalazide

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Treatment</th>
<th>n</th>
<th>Range of Ages</th>
<th>Remission Rate</th>
<th>Comparator</th>
<th>n</th>
<th>Range of Ages</th>
<th>Remission Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scherl</td>
<td>2009</td>
<td>Balsalazide 3.3 g BID</td>
<td>166</td>
<td>43.6</td>
<td>13.4</td>
<td>18</td>
<td>57.0</td>
<td>27</td>
<td>70.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Total enrolled</th>
<th>Active agent</th>
<th>Active agent</th>
<th>Study reported "elderly" age range</th>
<th>Comparator</th>
<th>Results of primary outcome</th>
<th>Study duration</th>
<th>Results of primary outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levine</td>
<td>2002</td>
<td>154</td>
<td>Balsalazide 6.75 g/d (2.25 g TID)</td>
<td>49</td>
<td>42.3</td>
<td>12.6</td>
<td>18–80</td>
<td>54.9</td>
<td>8</td>
</tr>
<tr>
<td>Pruitt</td>
<td>2002</td>
<td>173</td>
<td>Balsalazide 6.75 g/d (2.25 g TID)</td>
<td>84</td>
<td>41.6</td>
<td>13.5</td>
<td>12 to 80</td>
<td>55.1</td>
<td>13</td>
</tr>
<tr>
<td>Green</td>
<td>2002</td>
<td>57</td>
<td>Balsalazide 6.75 g/d</td>
<td>28</td>
<td>43.0</td>
<td>13.7</td>
<td>>18</td>
<td>56.7</td>
<td>4</td>
</tr>
<tr>
<td>Mansfield</td>
<td>2002</td>
<td>50</td>
<td>Balsalazide 6.75 g/d</td>
<td>26</td>
<td>46.0</td>
<td>14.9</td>
<td>21–69</td>
<td>60.9</td>
<td>4</td>
</tr>
<tr>
<td>Green</td>
<td>1998</td>
<td>101</td>
<td>Balsalazide 6.75 g/d</td>
<td>50</td>
<td>39.7</td>
<td>12.7</td>
<td>23–76</td>
<td>52.4</td>
<td>8</td>
</tr>
<tr>
<td>Green</td>
<td>1998</td>
<td>99</td>
<td>Balsalazide 3 g/d</td>
<td>49</td>
<td>43.4</td>
<td>12.5</td>
<td>20–70</td>
<td>55.9</td>
<td>8</td>
</tr>
<tr>
<td>Green</td>
<td>1992</td>
<td>108</td>
<td>Balsalazide 3 g/d</td>
<td>54</td>
<td>46.0</td>
<td>NR</td>
<td>21–78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giaffer</td>
<td>1992</td>
<td>133</td>
<td>Balsalazide 4 g/d</td>
<td>68</td>
<td>46.0</td>
<td>NR</td>
<td>16–79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McIntyre</td>
<td>1988</td>
<td>79</td>
<td>Balsalazide 1 g BID</td>
<td>79</td>
<td>49.0</td>
<td>NR</td>
<td>19–79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleig</td>
<td>1988</td>
<td>43</td>
<td>Benzalazine 0.72 g TID</td>
<td>22</td>
<td>42.4</td>
<td>16.2</td>
<td>19–75</td>
<td>58.6</td>
<td>4</td>
</tr>
<tr>
<td>Dickinson</td>
<td>1985</td>
<td>32</td>
<td>Sulfasalazine 2 g/d (continued from induction)</td>
<td>10</td>
<td>35.0</td>
<td>NR</td>
<td>28–54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: NR, not reported.
median values as a mean) was 42.8 years with a mean range of 32 to 50.4 years. Forty-one studies reported standard deviation of the mean age and 3 reported standard error of the mean. Specific age range was reported in 65 studies; however, 13 of these did not report an upper limit to the range. Composite age range was from 12–80 years.

Of the initial 72 studies, one reported only a mean age without a SD or age range, and thus further age related information could not be ascertained. Another study did not include elderly patients based on the reported age range of 28–54 years. Of the remaining 70 studies, 26 did not report a SD/SEM, one of which also did not report an upper limit to the age range, so no further age related information could be estimated. In the other 25 studies, since no SD was provided, an estimate of the number of elderly patients could not be performed. However, based on their reported age range, they presumably included a percentage of elderly subjects. Nine studies (6 not reporting SD) reported age subgroups, generally with subdivision of age 65 or older, which was representative of 8% of the study population. Therefore, in the remaining 41 studies, the estimated number of elderly patients in each study was calculated by adding 1 or 2 SD to the mean age, whichever provided the closest estimate to an elderly age. Using this method, approximately 16% of the study population had a mean age of 57.2 years or older. In 4 studies, a calculation of 2 SD provided a closer estimate to an elderly age, with 2.5% of the population aged 64.4 years or older.

Efficacy of 5-ASA agents

Mesalazine-containing preparations—induction

Twenty-six RCTs specifically evaluated mesalazine containing preparations (Asacol®, Lialda®, Pentasa®, Salofalk®, Mesasal®, Ipocol®, Eudragit L unspecified and mesalazine not otherwise specified) for the induction of clinical efficacy in patients with mild to moderately active UC. The primary outcome measures were induction of remission in 15, clinical response in 5, treatment success in 5, and mucosal healing in 1. Study duration ranged from 4–8 weeks. Most studies compared a certain mesalazine formulation to a different mesalazine preparation or to placebo; however, there were also comparisons with sulfasalazine and budesonide. The active agent was evaluated for superiority, non-inferiority, dose-ranging studies, and frequency scheduling regimens. Of these 26 studies, 4 reported age subgroups, but did not report results stratified by these age subdivisions. There were 3 studies, however, that did present age subanalysis of the results. In 1987, Schroeder et al reported that when compared to placebo, Asacol® 1.2 g QID achieved clinical response at week 6 in 24% versus 5% of patients respectively.

The authors report that analysis by age subdivisions, with age ranges of 15–30, 31–45 and >45, had no significant effect on clinical outcomes. In 1993, Hanauer et al compared Pentasa® in doses of 2 g/d and 4 g/d to placebo and found treatment success in 57%, 59%, and 36% respectively. Again, subgroup analysis showed no outcome difference. In 2009, in their ASCEND III study, Sandborn et al found that in patients with moderately active UC, Asacol® at a dose of 4.8 g/d achieved treatment success in 70% of patients after 6 weeks of treatment compared with 66% for those treated with 2.4 g/d. However, subgroup analysis showed a trend towards improved outcomes in patients 65 years and older receiving the lower mesalazine dose of 2.4 g/d.

Mesalazine-containing preparations—maintenance

Eighteen studies evaluated these same mesalazine containing preparations (Asacol®, Lialda®, Pentasa®, Salofalk®, Apriso®, Claversal®, Eudragit-S, and mesalazine not otherwise specified) for the maintenance of remission and prevention of relapse over a 6–12 month period. In general, findings from these studies proved the superiority or non-inferiority of mesalazine preparations in the maintenance of remission as compared to sulfasalazine preparations and placebo. Studies looking at dose escalation found that a higher total dose/day is most effective. Finally, frequency studies found that once daily dosing was as effective, if not more effective, than conventional dosing of BID or TID regimens. Four studies performed age subanalyses. Sandborn et al report that in patients with clinical remission of UC, once-daily dosing of Asacol® at doses of 1.6–2.4 g/d, when compared to the same daily doses but given as BID, was as effective for the maintenance of clinical remission over a 12 month period, with remission rates of 85.4% in
both groups. Furthermore, treatment outcomes were consistent between age subgroups younger or older than 65 years. Paoluzi et al found that, compared to 1.2 g/d, Asacol® 2.4 g/d maintained remission in 30% vs. 26% of patients after 12 months of treatment, with no difference in outcomes when stratified by age. Miner et al compared Pentasa® 4 g/d to placebo and found a significantly higher remission rate of 64% versus 38%, with no difference in outcome in the age subgroup analysis. Lastly, a 1995 study by Fockens et al found that in 169 patients, compared to 1.5 g/d, Pentasa® given at a dose of 3 g/d was associated with fewer relapses over a 12-month period, 33% vs. 46% respectively.

Olsalazine—induction
Olsalazine is a compound consisting of 2 molecules of 5-ASA linked together by an azo bond, eliminating the sulphapyridine. The majority of adverse events associated with sulphasalazine have been attributed to this sulphapyridine component. There have been 9 RCTs, between 1985–1998, which have evaluated Dipentum® or olsalazine not otherwise specified for the induction of clinical response or endoscopic remission. Outcome assessment was performed at a range of 2 to 12 weeks. Five studies compared olsalazine to placebo, all with findings of statistically significant clinical improvement in the olsalazine treatment groups. When compared to sulphasalazine, all 3 studies showed non-inferiority of olsalazine. There was one study that compared olsalazine 3 g/d to Eudragit-L mesalazine 3 g/d and found similar rates of endoscopic remission. There was one last study that looked at dose response of olsalazine, with findings favoring the higher dose (3 g/d) versus 0.75 g/d and 1.5 g/d. In this group of RCTs, there was no age subgroup analysis of the results.

Olsalazine—maintenance
Seven RCTs looked at the use of olsalazine for the maintenance of remission or prevention of relapse. Five of these compared olsalazine to sulphasalazine, 1 to Asacol®, and 1 was a dose-escalation trial. Duration of the studies was 6 to 12 months. All 5 studies comparing olsalazine to sulphasalazine found comparable results. The study by Courtney et al in 1992 found that in patients with clinical remission, olsalazine 500 mg BID compared to Asacol® 1.2 g/d was superior in maintaining remission over a 12 month period, with failure rate of 24% versus 46% respectively. Travis et al was the only RCT to evaluate dose escalation therapy, finding that a dose of 2 g/d was the optimal dose for maintaining remission, with 78% achieving remission at 12 months compared to 60% of those on a dose of 0.5 g/d and 70% on a dose of 1 g/d. There was no age subgroup analyses reported in any of these studies.

Balsalazide—induction
Balsalazide is a prodrug where 5-ASA is azo bound to 4-aminobenzoyl-β-alanine (4-ABA), which is unique from olsalazine in that both the pro-drug and 4-ABA are pharmacologically inert, thus delivering 99% of 5-ASA compound to the colon. There are 6 RCTs evaluating the efficacy of balsalazide in the treatment of active UC. The primary outcome measures were induction of remission in 4, clinical response in 1, and improvement in rectal bleeding in 1. Study duration was 8–12 weeks. When compared to placebo, balsalazide was superior in achieving clinical response. This same finding was reported in the 2 studies comparing balsalazide with sulphasalazine. Three studies compared balsalazide 6.75 g/d to Asacol® 2.4 g/d, with results favoring balsalazide. While the Scherl et al study in 2009 did provide age subdivisions, there was no age subgroup analysis.

Balsalazide—maintenance
Four studies evaluated balsalazide as a maintenance medication. Green et al in 1998 and 1992 looked at balsalazide 3 g/d versus Eudragit S mesalazine 1.2 g/d and balsalazide 6 g/d respectively, finding comparable results over a 2 month period. In 1992 Giaffer et al compared balsalazide 4 g/d to 2 g/d and found fewer relapse rates with the 4 g/d regimen over 52 weeks. McIntyre et al found similar efficacy between balsalazide 2 g/d versus sulphasalazine 2 g/d
over a 6 month follow-up period. There were no age subgroup analyses in these studies.

Sulfasalazine—induction

Dating back to the 1960s, sulfasalazine was found to be effective in the treatment of UC; it has been the mainstay of treatment for years. Interestingly, there was a paucity of RCTs looking at the efficacy of sulfasalazine for the induction of clinical remission. In fact, there was only 1 RCT that met our inclusion and exclusion criteria, performed by Fleig WE et al in 1988. The authors report that benzalazine 0.72 g TID, compared to sulfasalazine 1 g TID, had similar efficacy achieving clinical improvement at week 6. There was no age related results.

Sulfasalazine—maintenance

The last RCT from Dickinson et al in 1985 found that in patients with clinical remission of UC, sulfasalazine given as 2 g/d “continued” from induction versus given as a 14 day burst of 3 g/d at the start of symptom recurrence (“on-demand”) after induction had been achieved, had similar relapse rate at a 12 month follow-up period, 30% versus 39% respectively. Unfortunately, this study did not include any elderly patients, based on the stated age range of 28–54 years.

Safety of 5-ASA agents

Of the 72 RCTs, 4 did not discuss safety and/or tolerability profiles. Of the remaining 68 studies, while safety, tolerability, AE and withdrawal rates were discussed, none of these studies reported by age subanalysis.

Discussion

To date, there have been no clinical trials that have directly evaluated treatment efficacy of UC in the elderly population. The approach to treating UC in this unique population has been based on expert opinion and extrapolated data from clinical trials that may or may not have included elderly patients. Evidence based guidelines generally emerge from RCTs, with the assumption that the findings obtained will be applicable to general clinical practice. The elderly population, independent of functional status, is often excluded due to co-morbidities and polypharmacy and concern for drug interactions; it is therefore under-represented in the RCT population. This systematic review is, to the best of our knowledge, the first attempt to review all of the RCTs addressing the treatment outcome of UC in the elderly, defined as age 60 years or older.

In total, 112 RCTs were included in the final analysis and were grouped by medication therapy: BA, IS or 5-ASA. While nearly all studies reported either a mean or median age, only 38% additionally reported the SD and age range. The mean composite age for the BA studies was 39.2 years, 38.5 years for IS, and 42.8 years for the 5-ASA studies, consistent with a young middle-aged patient. Our estimation of the percentage of patients per study that would have qualified as elderly was no more than 16% of the study population, and in most cases a much smaller percentage (<8%). This is a gross underrepresentation of the proportion of elderly patients currently seen in general clinical practices. As an example, based on our clinical experience, 80% of the IBD patients seen at the Minneapolis Department of Veterans Affairs are in fact elderly.

None of the BA or IS studies presented analyses of the data by age subgroups. In the 5-ASA group, there were 4 studies that provided age sub-divisions; however, they did not report any analysis of the data stratified by these age subgroups. There were an additional 4 studies that reported no difference in efficacy outcomes by age subgroup analysis, but they did not provide supporting data in the paper and did not specify what age subgroups they evaluated. Notably, there were 4 studies that did present age-specific analyses, all of which evaluated the efficacy of mesalamine. In the ASCEND III trial, the study conclusion was that Asacol® at a dose of 4.8 g/d achieved better clinical results than the 2.4 g/d dose; however, there was a non-significant trend favoring the lower dose in patients 65 years or older. In the Paoluzi et al study, they found that a dose of 2.4 g/d was more effective in maintaining remission than a 1.2 g/d, with no difference in outcomes when stratified by age. In a dosing study by Sandborn et al, once daily dosing was found to be as effective as BID dosing and no difference in outcome seen in patients < 65 years or 65 years and older. Finally, Fockens et al reported that Pentasa® 3 g/d was more
effective in maintaining remission than a dose of 1.5 g/d, but interestingly found that older age was associated with a lower relapse rate. If one were to extrapolate data from these 4 studies, it would appear that mesalamine at a dose of 2.4 g/d is most effective in an elderly patient and that once daily dosing is a reasonable frequency schedule. Additionally, relapse rates may be less frequent in the elderly. However, caution should be advised when interpreting these results, as the trends, while noteworthy, are not conclusive. Interestingly, none of the 116 RCTs reviewed reported adverse events or safety profile by age subgroup.

Physicians caring for this elderly IBD population are faced with multifaceted problems, including misdiagnoses, late presentation, management of comorbid diseases, and polypharmacy with potential for drug interactions and adverse events. While general geriatric treatment principles apply to IBD patients, there are some notable IBD specific considerations. Early aggressive therapy along with combined therapy has been endorsed as a more favorable treatment strategy for the general IBD population; on the other hand, there is no consensus on whether this translates to the elderly population as well. Katz and Feldstein published a comprehensive review of the pharmacokinetics and drug interactions that are commonly seen in elderly patients with IBD. They note that while recognition of the drug type, elimination patterns, drug metabolism enzymes, and GFR are important, ‘frailty’ may actually be more important than age in drug elimination and pharmacokinetics. Age alone, therefore, should not exclude a certain class of drugs. They suggest distinguishing between the ‘fit elderly’ and the ‘frail elderly’ when making decisions about treatment. Elderly are also more susceptible to adverse events. For example, osteoporosis is already a concern for the elderly population, making corticosteroids a less appealing adjunctive medication. While there is no evidence that the efficacy of biological therapy is altered by age, there have been some non-RCT reports suggesting a trend towards more severe infections in patients older than 70 years.

At this time, the treatment considerations of UC in the elderly are similar to younger patients. However, there is insufficient evidence in our current literature to evaluate the efficacy of treatment for UC specifically in the elderly. Additionally, the unknown safety profile in this population warrants further study. With the rising number of elderly patients with UC, there is a tremendous need for more clinical trials—ideally RCTs—that specifically address UC treatment in the elderly population.

Author Contributions

Conceived and designed the experiments: BH, BB, AS. Analyzed the data: BB, BH, AS. Wrote the first draft of the manuscript: BB, BH, AS. Contributed to the writing of the manuscript: BA, BH, AS. Agree with manuscript results and conclusions: BH, BB, AS. Jointly developed the structure and arguments for the paper: BB, BH, AS. Made critical revisions and approved final version: BB, BH, AS. All authors reviewed and approved of the final manuscript.

Funding

Funded in part by a VA career development grant (CDA-2) (AS).

Competing Interests

Author(s) disclose no conflicts of interest.

Disclosures and Ethics

As a requirement of publication author(s) have provided to the publisher signed confirmation of compliance with legal and ethical obligations including but not limited to the following: authorship and contributorship, conflicts of interest, privacy and confidentiality and (where applicable) protection of human and animal research subjects. The authors have read and confirmed their agreement with the ICMJE authorship and conflict of interest criteria. The authors have also confirmed that this article is unique and not under consideration or published in any other publication, and that they have permission from rights holders to reproduce any copyrighted material. Any disclosures are made in this section. The external blind peer reviewers report no conflicts of interest. Provenance: the authors were invited to submit this paper.

References

101. Lichtenstein GR, Ramsay D, Rubin DT. Randomised clinical trial: delayed-release oral mesalazine 4.8 g/day vs. 2.4 g/day in endoscopic mucosal healing—ASCEND I and II combined analysis. Aliment Pharmacol Ther. 2011;33:672–8.

