Age-related Differences in the Consequences of Obesity on Cardiovascular Disease, Type 2 Diabetes, Osteoarthritis, Cancer, Physical Function, Osteoporosis, Cognitive Function, and Mortality Risk in the Elderly

Ruth E. Brown and Jennifer L. Kuk
School of Kinesiology and Health Science, York University, Toronto, ON, Canada.

ABSTRACT: The purpose of this review was to describe the health consequences of obesity in older adults. Although obesity is associated with risk of cardiovascular disease, type 2 diabetes, hypertension, and dyslipidemia in the elderly, the association appears to be weaker in older compared to younger adults. Obesity in older adults is also associated with significantly higher risk of osteoarthritis, postmenopausal breast cancer, and impairments in physical function. However, the influence of obesity on mortality risk, osteoporosis, fracture risk, and cognitive function in older adults is not well understood. Intentional weight loss in obese older adults may be beneficial for metabolic health and physical function, but more long-term studies are needed. When examining the influence of obesity on different health parameters, future studies should consider using alternative measures of obesity beyond body mass index (BMI), such as waist circumference, and also investigate how body weight changes across the lifespan may influence health. The association between obesity and different health parameters in older adults appears to be more complex than in younger adults, and thus requires further investigation.

KEYWORDS: obesity, older adults, mortality risk, physical function, weight loss

ACADEMIC EDITOR: David Simar, Editor in Chief

TYPE: Review

FUNDING: Authors disclose no funding sources.

COMPETING INTERESTS: Authors disclose no potential conflicts of interest.

COPYRIGHT: © the authors, publisher and licensee Libertas Academica Limited. This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License.

CORRESPONDENCE: jennkuk@yorku.ca

Introduction

Older adults are a rapidly growing population, representing 13% of the United States population in 2010, and it is projected that they will represent 20% of the population by the year 2030. Not only is the number of older adults increasing, but so is the prevalence of obesity in the elderly population. Over the past 30 years, the number of obese older adults has doubled to 35.4% in 2012. The growing prevalence of obesity is a public health concern worldwide. Obesity is now estimated to be responsible for 5% of all deaths globally and is associated with an increased risk for many cardiometabolic risk factors, such as type 2 diabetes, dyslipidemia, hypertension, gall bladder disease, certain cancers, and coronary heart disease. However, the negative effects of obesity on health are not as clear in older as in younger adults. In fact, obesity has been associated with beneficial effects in older adults, such as increased bone mineral density, decreased osteoporosis, and most notably lower mortality risk. Whether weight loss is safe for the obese elderly is also controversial. However, there are many aspects of obesity that are detrimental in adults of all ages, and may be particularly relevant for elderly individuals, such as decreased physical function, increased prevalence of type 2 diabetes, and lower cognitive function. Thus, the purpose of this review is to describe the health consequences of obesity in the older adult population. Specifically, this review will address the effects of obesity on metabolic health, mortality risk, physical function, osteoarthritis, osteoporosis, breast cancer, cognitive function, and the effects of weight loss in the obese older adult population. A summary of the findings is provided in Table 1.
Metabolic Health Risk Associated with Obesity in the Elderly

Obesity is associated with negative health outcomes in both younger and older adults. The combination of older age and obesity may augment the risk for certain negative health risk factors, such as fasting glucose, type 2 diabetes, and hypertension. However, others have reported that the relationship between obesity and metabolic health risk may differ by age. The association between obesity and metabolic health risk has been reported to be weaker in older adults compared to younger adults for prevalent cardiovascular disease, hypertension, dyslipidemia, and type 2 diabetes. Similarly, unlike in middle-aged and old adults, body mass index (BMI) was not associated with risk of future cardiovascular events in very old adults. Thus, the association between obesity and metabolic health risk may not be consistent across the life span.

The increased obesity-related health risk that is observed in older adults may be partially because of the age-associated changes in body composition. Aging is associated with decreases in subcutaneous fat, increases in visceral adiposity, and redistribution of fat to ectopic sites such as skeletal muscle, liver, and heart. These fat depots are associated with insulin resistance independent of overall body fat. Further, these age-related differences in body composition can be observed independent of differences in body weight. Waist circumference has also been reported to continuously increase throughout the life span, even when there is no change or a decrease in body weight. A high waist circumference has been associated with increased risk of incident heart failure in old men and women independent of BMI. Thus, BMI may mask the redistribution of fat to the abdominal area during aging, which is a potential explanation for why the association between BMI and health in older adults is augmented. Conversely, the association between obesity and aging may be weakened over time because of a “survival bias,” whereby obese middle-aged adults who have obesity-related conditions are more likely to die prematurely, and may be less likely to be recruited or ineligible to participate in studies. Further, obese adults who do survive into older age may be more resistant to the negative effects of obesity. Finally, the decrease in height that is associated with aging may artificially elevate BMI.

Mortality Risk

As with morbidity, the association between obesity and mortality in the elderly population is less clear. Whereas obesity was associated with higher mortality risk in young and middle-aged adults, it was associated with similar or lower mortality risk than normal weight in older adults. In fact, most studies that have assessed the obesity–mortality risk relationship in older adults using BMI report either lower mortality risk or a similar mortality risk in obese compared to normal weight older adults. However, some studies do report that obesity is associated with higher mortality risk in older adults. Masters et al recently suggested that is associated with aging may artificially elevate BMI.

Table 1. Summary of the Influence of Obesity on Health Parameters in Older Adults

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>ASSOCIATION WITH OBESITY</th>
<th>EFFECT OF AGE</th>
<th>ASSOCIATION WITH OBESITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic health risk</td>
<td>Obesity is associated with greater risk of disability and impairments in mobility and activities of daily living.</td>
<td>Much weaker association compared to younger adults.</td>
<td>Obesity is associated with greater risk of disability and impairments in mobility and activities of daily living.</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>Obesity is associated with increased risk of osteoarthritis, independent of body mass.</td>
<td>Stronger than in younger adults.</td>
<td>Obesity is associated with increased risk of osteoarthritis, independent of body mass.</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Obesity is associated with increased risk of osteoporosis, independent of body mass.</td>
<td>Stronger than in younger adults.</td>
<td>Obesity is associated with increased risk of osteoporosis, independent of body mass.</td>
</tr>
<tr>
<td>Cognitive function</td>
<td>Obesity is associated with poorer executive function and global cognition.</td>
<td>Not well understood at any age.</td>
<td>Obesity is associated with poorer executive function and global cognition.</td>
</tr>
</tbody>
</table>

Note: The association between obesity and health risk may not be consistent across the life span.
that survey-based estimates of the relationship between obesity and mortality risk in different age groups is confounded because of disparate cohort mortality and age-related survey selection bias. In contrast to population-based studies that report that the association between obesity and mortality risk is weakened in older adults, the association between obesity and mortality risk has been reported to actually grow stronger with age after accounting for age-related survey selection bias and cohort differences in mortality risk.

As with morbidity, the attenuated association between obesity and mortality risk in elderly adults may also be explained by several factors, such as “survival bias” or the “obesity paradox”. The obesity paradox has been observed in patients with heart failure, hypertension, and coronary artery disease, and in those who have undergone cardiac revascularization, wherein obese adults who experience cardiovascular events have a better prognosis than normal weight individuals. This may be because many diseases are associated with a catabolic state, and thus, obese individuals with heart failure may have more metabolic reserve than lean individuals. Further, normal weight or lean persons who experience a cardiovascular event may have a greater genetic predisposition for cardiovascular disease or may be resistant to medical interventions. Therefore, obesity in individuals with established cardiovascular disease or heart failure may have a survival advantage over normal weight patients, which could be an explanation for the lower mortality risk observed in obese older adults.

Limitations of BMI in older adults, such as decrease in height and redistribution of fat mass associated with aging, may also obscure the true association between obesity and mortality risk. Waist circumference provides a better indicator of body fat distribution than BMI and thus may be a more useful measure to predict mortality in the elderly. Waist circumference is associated with morbidity and mortality independent of BMI in young and old, likely because of the strong association between waist circumference and visceral fat. Older adults have more visceral fat than younger adults for a given BMI, which may in part explain why older adults are at an elevated health risk for certain negative metabolic health outcomes. Waist-to-hip ratio has also been demonstrated to be a better predictor of higher mortality risk in older adults than BMI. Thus, because of the significant changes in body composition that may be masked by BMI in older adults, measures of body fat distribution, such as waist circumference or waist-to-hip ratio, may be more valuable than BMI when assessing mortality risk in older populations. However, Kuk and Ardern reported that the association between obesity and mortality risk remained negative when obesity was assessed using BMI or waist circumference. Nevertheless, the association between obesity and mortality risk in older adults remains controversial.

This controversy may also be in part because of changes in obesity over the lifespan. In particular, body weight fluctuations during middle age and between middle and old age may also be important to consider when assessing mortality risk in older adults. Several studies have reported that weight loss between middle age and old age may be associated with higher mortality risk, as weight loss is often associated with underlying disease in older adults. Further, only weight gain during young and middle adulthood, and not weight gain later in life, is associated with higher mortality risk. Conversely, other studies report that adults who are obese during middle age and continue to gain weight as an older adult may have a significantly higher mortality risk compared to those who remain non-obese during both age periods. Further, even an obese stable body weight during both middle age and old age may be associated with higher mortality risk compared to those who remain non-obese during both age periods. Therefore, it may be important to consider patterns of body weight across the lifespan and not just during older age when assessing mortality risk.

Physical Function

Although underweight is associated with poorer physical function outcomes in older adults, obesity also puts older adults at a higher risk for disability and physical function impairments, such as sit-to-stand dependence and difficulty walking short distances, as well as impairments in activities of daily living. Aging is associated with body compositional changes that may exacerbate the detrimental effects of a high body weight. Among older adults, both older age and obesity were associated with greater risk of falls and greater impairments in activities of daily living after a fall, while obesity was also associated with a lower probability of serious injury from a fall. Sarcoptenic obesity is an increase in fat mass that is masked by concomitant reductions in lean mass. Sarcoptenic obesity is associated with higher risk for chronic health conditions than having either condition alone, and it has recently been suggested that sarcoptenic obesity is a strong risk factor for frailty, leading to falls, worsening disability, co-morbid conditions, hospitalizations, and premature mortality.

Older obese adults are at a higher risk for physical disability and lower quality of life, even when they are not at an increased risk for premature mortality. Several longitudinal studies have reported that obese older adults were at a significantly higher risk for developing arthritis and type 2 diabetes, self-reported and measured functional limitations, physical disability, and recovering from a disability despite having a similar or lower mortality risk as normal weight older adults. This may result in a large proportion of obese older adults living the last years of their life with functional disability and co-morbid health conditions.

Osteoarthritis

Osteoarthritis is the most prevalent form of arthritis and one of the most common sources of pain and disability among...
There is evidence that osteoarthritis is more common in women than men. Osteoarthritis is most common in older adults and is exacerbated by obesity, particularly in the knee and wrist. Older women have been reported to have a higher prevalence of osteoarthritis than younger women with comparable obesity levels. Further, a combination of older age and obesity has been reported to be associated with a higher risk of knee osteoarthritis, increased prevalence of knee osteoarthritis-related pain, stiffness, disease severity, and decreased physical function, as well as risk of total hip replacement because of osteoarthritis. There is evidence that among older adults, obesity is associated with a greater risk of progressive knee osteoarthritis compared to non-obese; however, this is not supported by all studies. In older Americans, the number of quality-adjusted life years lost was greater in those with both obesity and knee osteoarthritis (3.5 years) compared to those with obesity (2.5 years) or knee arthritis (1.9 years) alone. The time course of obesity may also be important in the development of osteoarthritis, as a sustained high BMI throughout adulthood was associated with the highest risk of osteoarthritis. Therefore, there is unequivocal evidence that obesity is associated with risk and burden of osteoarthritis, particularly in older women.

Osteoporosis

Osteoporosis is the age-related microarchitectural deterioration of bone leading to skeletal fragility and fractures. Traditionally, obesity has been considered to be associated with increased bone mineral density and protective against osteoporosis, likely because of a greater mechanical loading on the bone as a result of larger body mass. One study reported that obese postmenopausal women developed osteopenia 3–5 years after post-menopause compared to normal weight women. However, this was mainly because of a higher bone mineral content at baseline as rate of bone loss was similar between lean and obese women. Whether obesity is indeed protective for risk of osteoporosis has recently been questioned. Zhao et al demonstrate that fat mass is negatively associated with bone mass after adjusting for the mechanical loading effect of body weight on bone mass. Furthermore, young adult females who gained weight over five years had higher bone mineral density but lower bone strength when normalized for body weight compared to stable weight females. Similarly, waist circumference has been positively associated with risk of osteoporosis and inversely associated with bone mineral density independent of body mass. Conversely, others have also reported that in older postmenopausal women, a high waist circumference may be beneficial for bone mineral density and osteoporosis independent of BMI.

The association between obesity and fracture risk is more controversial. A meta-analysis reported that low BMI was associated with an increased risk of osteoporotic fracture, whereas a high BMI was associated with a lower risk. Age is associated with increased risk of osteoporotic fracture, while higher body fat percentage is associated with lower osteoporotic fracture risk in women. Conversely, another study reported that increasing age and BMI were associated with a higher risk of vertebral fracture, despite obese adults having a higher bone mineral density. Furthermore, in postmenopausal Japanese women, obesity is associated with higher risk of vertebral fracture, and similar risk of femoral neck and long-bone fracture, independent of bone mineral density. Finally, another study reported that obese women were more likely to experience incident ankle or upper leg fracture, but not wrist fracture, compared to non-obese women. The complex association between obesity and fracture risk may be because of the differential effects of obesity on fall risk and bone strength. Although obesity may be associated with higher bone mineral density, it is also associated with increased fall risk. Further, the increased subcutaneous adipose tissue thickness is also hypothesized to act as a cushion, protecting against bone fractures. Nevertheless, whether or not obesity, as determined by BMI, body fat percentage or waist circumference is indeed beneficial for osteoporosis, or fracture risk is still not established and requires further investigation.

Cognitive Function

Obesity may also have detrimental effects on the brain and is associated with increased risk of cognitive decline. BMI has been reported to be independently associated with decreased attention, processing speed, and fine motor speed across the life span, and obesity-related deficits in executive function may be exacerbated with increasing age. Furthermore, studies have demonstrated that obese older adults perform poorer on tests of memory as well as tests that measure global cognitive function and psychomotor speed than their leaner counterparts.

Obesity has also been associated with increased risk of specific types of dementia, such as Alzheimer’s disease. A higher BMI is also associated with lower brain volume in older patients who have already been diagnosed with mild cognitive impairment or Alzheimer’s disease. Some studies suggest that obesity is associated with risk of dementia in middle-aged adults but may be protective for dementia risk in older adults. However, this paradoxical relationship may be partly explained by the fact that unintentional weight loss is positively associated with increasing severity of dementia, and may even be a symptom before diagnosis. Clearly, more studies are needed to clarify the complex association between body weight, age, and dementia.

Breast Cancer

Although there is evidence that obesity increases the risk for some types of cancer, whether there is an interaction between obesity and age on cancer risk is less established. Most evidence supporting an interaction between age and obesity is for breast cancer. The proportion of women...
diagnosed with breast cancer aged 65 and older has increased 3% over the past several decades, with an increase in obesity likely being a contributing factor.110 Although both older age and obesity are associated with breast cancer risk,111,112 the association between obesity and breast cancer risk may also depend on menopausal status.113,114 While obesity is positively associated with breast cancer risk in premenopausal women,115–118 there is evidence that obesity has no association or an inverse association with breast cancer risk in premenopausal women.115,116,118 In contrast, obesity was reported to be associated with a higher breast cancer risk for premenopausal women but not postmenopausal women in a population at high risk for breast cancer.119

Obesity is associated with worse prognosis for breast cancer regardless of menopausal status.120 In both premenopausal and postmenopausal women, obesity has been associated with large tumor size and high histological grade.113,120 This is because obese women are more likely to have their breast cancer detected via imaging techniques rather than clinical or self-examination, and have a higher proportion of large tumors and lymph node metastases at diagnosis compared to non-obese women.121 Several studies have shown that obesity is associated with increased mortality risk in women with breast cancer independent of age.122–124 Furthermore, in pre- and postmenopausal women, both adult obesity and significant weight gain after diagnosis have been associated with a higher mortality risk in women with breast cancer compared to those with normal weight and stable weight, respectively.125–127 However, the negative effects of weight gain may be stronger among premenopausal women compared to postmenopausal women.120,128 Therefore, there is strong evidence for an increased risk of breast cancer in obese postmenopausal women, but the prognosis for breast cancer seems to be worse for obese women regardless of menopausal status.

Weight Loss in Older Adults

Whether obese older adults should attempt weight loss is a controversial issue.11 Weight loss in the elderly has been associated with loss of bone mass,129–131 increased risk of fractures,132 higher mortality risk,57,133 and is often accompanied by a loss of lean mass.131,134–136 Moreover, a regain in body weight does not fully restore lean mass.137 Therefore, preservation of lean mass may be critical when older adults undergo a weight loss intervention. Many studies have demonstrated that including exercise as part of the weight loss intervention is associated with positive health outcomes, and may allow older adults to lose a significant amount of fat mass with no or little loss in lean mass.130,134,138,139 However, only two studies have included older adults,155,156 and more research is needed to confirm the association between weight loss and cognitive function in the obese elderly. In addition, to our knowledge there have been no studies that have attempted to determine the effects of intentional weight loss on cognitive function in obese adults with dementia. Although more randomized controlled trials are needed to further elucidate the association between weight loss and health outcomes in older adults, it seems that intentional weight loss, particularly when achieved partly through exercise, may be beneficial for metabolic health, physical function, and cognitive function in older obese adults.

In summary, the increased prevalence of obesity in the growing aging population is a major public health concern, and poses a huge threat to health care systems. Although obesity is associated with negative metabolic risk factors in the elderly, this association may be attenuated for certain risk factors in older compared to younger adults. There is much evidence to support that obesity in older adults is associated with significantly high risk of osteoarthritis, postmenopausal breast cancer, and poor breast cancer prognosis as well as impairments in mobility, activities of daily living, and physical functioning. However, the influence of obesity on mortality risk, osteoporosis, and fracture risk in the older adult population is still not well understood. Future studies should consider additional measures of obesity beyond BMI when assessing these relationships, such as waist circumference or waist-to-hip ratio.

65. Neogi T, Zhang Y. Epidemiology of OA.

