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Abstract: The General Time Reversible (GTR) model of nucleotide substitution is at the core of many distance-based and 
character-based phylogeny inference methods. The procedure described by Waddell and Steel (1997), for estimating distances 
and instantaneous substitution rate matrices, R, under the GTR model, is known to be inapplicable under some conditions, 
ie, it leads to the inapplicability of the GTR model. Here, we simulate the evolution of DNA sequences along 12 trees 
characterized by different combinations of tree length, (non-)homogeneity of the substitution rate matrix R, and sequence 
length. We then evaluate both the frequency of the GTR model inapplicability for estimating distances and the accuracy 
of inferred alignments. Our results indicate that, inapplicability of the Waddel and Steel’s procedure can be considered a 
real practical issue, and illustrate that the probability of this inapplicability is a function of substitution rates and sequence 
length. 

We also discuss the implications of our results on the current implementations of maximum likelihood and Bayesian 
methods.
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Introduction
All phylogeny inference methods are based on explicit or implicit assumptions whose validity can 
possibly be challenged when analysing real data. Molecular genetic markers (mostly DNA sequences) 
have arguably become the most popular and powerful source of data for phylogeny inference. Many 
methods for reconstructing trees from DNA sequences (eg, distance-matrix methods, Maximum 
Likelihood and Bayesian approaches) rely on a substitution model that describes how sequences evolve 
over time. Different models, ranging from the JC model (Jukes and Cantor 1969) (assuming equal 
nucleotide frequencies and identical substitution rates) to the General Time Reversible (GTR) model 
(Lanave et al. 1984), (allowing for different nucleotide frequencies and 6 different substitution rates) 
have been developed.

The GTR model is a stationary Markov process by which substitution probabilities among nucleotides 
are expressed in the form of a matrix P(t). The GTR model assumes that the equilibrium character state 
frequencies and the instantaneous transition probabilities remain constant through time. The dynamic 
of substitution probabilities for an infi nitesimal time dt is described by

 P(t + dt) = P(t) (I + Rdt) (1)

where I and R are four-by-four real matrices representing, respectively, the identity matrix and the 
instantaneous substitution rate matrix (ie, the instantaneous substitution probabilities among the four 
nucleotides).

Lanave et al. (1984) and Rodriguez et al. (1990) have shown that

 P(t) = eRt (2)

is a solution of equation (1) such that, once R is given, the probability P(t) of substitution between two 
states can be computed for any t and the evolution of sequences through time is completely described 
as long as all GTR-assumptions are verifi ed.
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1When applying the Waddell and Steel (1997) procedure on AACGTGGCCAAAT, ATCGTCGTTAACC and AATTTCGTCACAA, the pairs 
of sequences (1,2) and (2,3) exhibit negative eigenvalues even when averaging the F# matrices.

The transition rate matrix R is generally unknown 
and many inference methods rely on its computation: 
(i) distance methods evaluate the GTR distance  t  for 
each sequence pair and require that the corresponding 
R (see below) is Markovian (ie, is a real matrix 
with negative diagonal elements and non-negative 
elements outside the diagonal), and (ii) Maximum 
Likelihood and Bayesian methods require estimating 
R for computing P(t) that, in turn, is required for 
computing the Likelihood of a tree (Felsenstein 
2004). In most phylogeny inference packages (eg, 
PAUP* (Swofford 2003) and MrBayes (Ronquist 
and Huelsenbeck 2003)), homogeneity across the 
tree is assumed, ie, a single R matrix is optimized 
for the whole tree.

On the basis of the seminal work by Lanave 
et al. (1984) and Rodriguez et al. (1990), Waddell 
and Steel (1997) proposed an exact estimation 
procedure to compute GTR distances (also 
implemented in PAUP* (Swofford 2003)). For 
any pair of sequences, the GTR distance is 
defi ned as

 t   = –trace[Plog(P)]  (3)

where log(P) is the logarithmic matrix function 
of the net transition matrix P. In turn, P can be 
computed using

 P = P–1F# (4)

where P is the diagonal matrix whose elements 
are the nucleotide frequencies at equilibrium 
(eg, estimated from the corresponding pairwise 
alignment) and F# is the symmetrized form of 
the divergence matrix F (computed from the 
corresponding pairwise alignment). Log(P) can 
then be evaluated via diagonalization: ie,

 log(P) = log[ ]Ω Λ Ω−1  (5)

where  X  and  K  are the eigenvector matrix and 
the eigenvalue diagonal matrix of P, respectively. 
Finally, the rate matrices R (for each sequence 
pairs) can be evaluated using

 R = Plog( )
t  (6)

As noted by (Rodriguez et al. 1990, Waddell 
and Steel 1997, Yang and Kumar 1996), if at least 
one of the four eigenvalues of P is negative, the 
logarithmic matrix function computed by equation 
(5) is not defi ned. If applied, the procedure would 
contradict the Markovian hypothesis underlying 
the GTR model and lead to the presence of complex 
numbers as transition rates (which has, to our 
knowledge, no biological meaning).

In the framework of ML phylogeny inference 
from multiple sequence alignments, Yang and 
Kumar (Yang and Kumar 1996) proposed to use a 
mean F# matrix (ie, the average of all F# matrices, 
each computed from the corresponding pairwise 
sequence comparison) for computing a single R for 
the whole tree. This procedure reduces, but does 
not eliminate, the risk of computing a complex 
R1. On the other hand, many phylogeny inference 
softwares implement optimization techniques that 
yield a single R for the whole tree. This approach 
removes the possibility of observing negative 
eigenvalues in P (because computation of log(P) is 
by-passed) but sacrifi ces the possibility of locally 
optimizing the transition rates (eg, for each pair 
of nodes) and thus constrains the hypothesis of
homogeneity along the whole evolutionary tree (an 
assumption that can be unreasonable with some 
data sets). When locally computing a R matrix 
(eg, for a pair of sequences) using the procedure 
of Waddell and Steel (1997), the homogeneity 
assumption only holds for the corresponding 
portion of the tree.

Recently, Catanzaro et al. (2006) have formally 
characterized the mathematical conditions, (and 
discuss their biological interpretation) that lead to 
the inapplicability of the GTR model, investigated, 
from a mathematical point of view, the relations 
between the occurrence of negative eigenvalues 
and both sequence length and sequence diver-
gence, proposed a possible procedure (CPM) for 
estimating R in terms of a non-linear optimization 
problem (that can be implemented without assuming 
homogeneity across the tree), and analyzed the 
goodness of this new approach. However, this work 
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was purely theoretical and did not asses whether 
negative eigenvalues would occur in biologically-
realistic situations using the GTR model. Here, we 
particularly investigate whether negative eigen-
values occur under circumstances where divergence 
among sequences is suffi ciently low not to cause 
major multiple alignment problems.

Approach
Although we will focus, throughout the present 
paper, on GTR distances, the problems discussed 
below can be relevant for computing R matrices 
under a ML or Bayesian framework. For evaluating 
whether the inapplicability of the GTR distance 
estimation of Waddell and Steel (1997) is a prac-
tical issue, (i) we simulated, along a tree topology, 
the evolution of DNA sequences under the GTR 
nucleotide substitution model using a set of given, 
biologically realistic, R matrices in the presence or 
absence of insertions and deletions; (ii) we analyse 
the accuracy of simulated dataset alignments using 
classical methods; (iii) we compute the frequency 
of occurrence of P matrices characterized by 
negative eigenvalues; and (iv) we investigate the 
relations between, on one hand, the probability 
of observing negative eigenvalues of P and, on 
the other hand, evolutionary divergence among 
sequences, length of sequences, and deviation 
from the homogeneity hypothesis. As it is clear that 
probability of the GTR model inapplicability, but 
also of alignment inference inaccuracy, increase 
with divergence among sequences (Catanzaro 
et al. 2006), we performed estimation of the align-
ment accuracy (point (ii) above) as a benchmark. 
Indeed, as alignment of sequences is a prerequisite 
to meaningful phylogeny inference, we consider 
that any analytical problem (here, the occurrence 
of negative eigenvalues) arising only for sequences 
that are too divergent to be aligned with accuracy, 
is unlikely to be a practical issue. Our analyses 
improve understanding of the conditions of inap-
plicability of the GTR estimation and hints at the 
necessity of implementing alternative algorithms 
and models to deal with this issue.

Methods
All simulations were performed along a single 
symmetric topology leading to four terminal 
taxa (seq3, seq4, seq5 and seq6 on fi gure 1); four 
different sets of branch lengths (fi gure 1) were 
used. Trees T0 to T3 have total lengths (ie, the 

sum of the branch lengths) of, respectively, 10, 20, 
28, and 54 units. Each branch is associated to a R 
matrix (see fi gure 1). Three situations (S1, S2, and 
S3) have been analyzed: (S1) All six branches are 
associated to the same single rate matrix (whose 
elements are taken from real data (Waddell and 
Steel 1997)):
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(S2) Matrices R1 to R5 are as in S1, whereas matrix 
R6 is as follows:
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(S3) Matrices R1 to R5 are as in S1, whereas matrix 
R6 is modifi ed as follows: lines 2 and 3 have been 
swapped, while the second and third cells within each of 
these two lines have been exchanged to maintain the 
validity of the matrix, ie, the occurrence of negative 
diagonal elements and sums of rows = 0:
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Figure 1. Tree topology along which the sequences have been 
simulated. Four different tree lengths have been analyzed. The trees 
are described by giving the length of branches 1 to 6: tree T0 = {1, 1, 
2, 2, 2, 2}; tree T1 = {2, 2, 4, 4, 4, 4}; tree T2 = {2, 2, 8, 4, 8, 4} and 
tree T3 = {5, 4, 8, 12, 10, 15}.
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The first situation (S1) corresponds to the 
classical implementation of the GTR model, ie, 
homogeneity of R across the tree. As there is no 
reason to consider that, with real data, all branches 
of a tree must be characterized by the same rate 
matrix, situations (S2 and S3) might be biologi-
cally more realistic. To evaluate the differential 
impact (DI) on sequence evolution of two matrices 
A and B, we use the formula  DI = Σ|| Aii| – |Bii||. 
DI is (– 0.0023, 0, 0.0009, – 0.0066) for S2 and
(0, 0.0083, – 0.0083, 0) for S3. In other words, 
in the S2 situation, the sequence experiencing a 
shift in rate matrix (at the base of branch 6) will 
instantaneously start to loose 0.0023 more A’s, 
0.0066 more T’s, and 0.0009 less G’s (whereas 
the rates of gains/losses of C’s will remain 
unchanged) per unit of time. By summing the 
absolute values of the elements of DI, we quantify 
the difference of absolute overall amount of diver-
gence that these matrices will induce to evolving 
sequences: ie, 0.0098 and 0.0166 for S2 and S3, 
respectively.

We also performed all simulations using two 
different lengths for the root sequence (seq0 on 
fi gure 1): 200 and 1000 base pairs. To investigate 
the effect of sampling, we performed a third set 
of analyses with 200 base pairs extracted from 
the simulations of 1000 base-pair-long strings. In 
all cases, we used an initial frequency of 0.25 for 
each nucleotide state in the root sequence. The 
unit of time parameter was set to 0.01 for the 200 
base-long root sequence simulations and to 0.002 
for the 1000 base-long root sequence simulations. 
Simulations were iterated 100 times under each of 
the 12 conditions described above.

Simulations without indels
The procedure that induces substitutions is at the 
core of our simulations: it simulates the stochastic 
process responsible for the sequence evolution 
assuming the neutrality hypothesis (Kimura 1968). 
Let’s consider a base x of the sequence S at position 
i at time t0, and let’s represent the possible four states 
{A, C, G, T} that x can take at time t as a pie chart 
equally divided. Each quarter is associated with a 
transition probability px j, where j∈{A, C, G, T}. By 
starting from a randomly chosen quarter j, the fi nal 
quarter (ie, the state to which the initial base will 
be substituted) is chosen by adding the transition 
probabilities px j until the sum is greater than or 
equal to a uniformly distributed pseudorandom real 

number r in [0,1] (see (Dorigo and Stützle  2003) 
for details about the algorithm).

When the simulations are performed without 
implementing an insertion/deletion process, the 
correct alignments are immediately obtained from 
the tip sequences. These alignments are used as 
reference against which ClustalW-generated align-
ments (Thompson et al. 1994) are compared.

Simulations with indels
To implement the insertion/deletion process, 
we incorporated the following parameters. The 
maximum number of insertion/deletion events is 
randomly chosen between 0 and one third of the 
branch length. The nature of the event, ie, whether 
it will be an insertion or a deletion, depends 
on the insertion/deletion ratio, here set to 1/3.5 
(Zhang and Gerstein 2003). The size of an inser-
tion/deletion is chosen from a power-law function 
fk = a × k– b describing the probability of having a 
gap of length k. Note that we limited the sum of 
lengths of all insertion/deletion events to be, on 
each branch,  ≤ 5% of the sequence length at the 
corresponding parent node (to avoid too many gaps, 
hence, major alignment problems). Two different 
functions have been used for insertions and dele-
tions with parameter values ains = 0.53, bins = 1.6 
and adel = 0.48, bdel = 1.51. See Zhang and Gerstein 
(Zhang and Gerstein 2003) for a discussion about 
power-law function parameter values. When the 
procedure inducing insertion/deletion is called, a 
base at position i in the sequence S is randomly 
chosen and used as starting point for the insertion/
deletion process. The number of insertion(s) on the 
sequence S is computed by the formula

 
Round MaxNumberOfIndels

idratio1+
⎡

⎣
⎢

⎤

⎦
⎥  

while the number of deletion is computed 
according to

Round idratio Round MaxNumberOfIndels
idratio

×
+

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥1  

where Max Number Of Indels is the the maximum 
number of insertion/deletion events as defi ned 
above. The number of bases to be deleted or 
inserted is chosen according the power-law. Each 



Evolutionary Bioinformatics Online 2006: 2 149

Applicability of the GTR model

base of an inserted block is chosen by calling the 
procedure introducing mutations (see above) using 
as input the base at position i.

During the simulations, each insertion/deletion 
event is recorded. These events are subsequently 
remapped and accordingly propagated into the tip 
sequences (removal of one or more bases in the 
child sequences in case of a deletion, or addition of 
one or more bases in the child sequences in case of 
an insertion) to recover the correct alignment.

Calculation of the eigenvalues
Calculation of the eigenvalues is done as described 
in (Waddell and Steel 1997). We compute, for each 
pair of terminal sequences, the observed divergence 
matrix F. We then compute F#, ie, the symmetrized 
form of F, and take the eigenvalues of F#.

Evaluation of the alignments
After the simulations, the terminal sequences 
of each of the 100 datasets are aligned using 
ClustalW with default parameters. The quality 
of each inferred alignment is then evaluated by 
comparing it to the corresponding correct refer-
ence alignment, ie, we use the column score 
(CS) implemented in the BaliScore program
(Thompson et al. 1999): CS = Σ   i

MCi /M, where M is 
the number of columns in the reference alignment 
and Ci = 1 for a column with all bases correctly 
aligned, otherwise Ci = 0.

Discussion
The results of the simulations are presented 
in tables 1–4. Three rate matrix combinations 
(S1 to S3) have been considered (see above), 
each with four possible tree lengths (T0 to T3). 
We performed the simulations with 200 and 1000 
base-long sequences without implementation of 
the insertion/deletion process. The 1000 base long 
sequences were analyzed as is and after extracting a 
substring of 200 bases (from base 200 to base 400). 
We also performed simulations on 200 base-long 
sequences with implementation of the insertion/
deletion process. Table 1 shows the frequencies 
of negative eigenvalues inferred for each set of 
conditions. We also evaluated the quality (table 2) 
of the alignments among simulated sequences 
using the CS score and the frequency of wrong 
alignments. Finally, the percentage of observed 
invariant columns in the reference multiple 

alignments and the mean pairwise divergences 
among tip sequences are shown in table 3 and 4, 
respectively.

Simulations without indels
The two parameters (i ) “length of the tree” 
(increasing from left to right, ie, from T0 to T3, in 
all tables) and (ii ) “difference between the two R 
matrices” (increasing  from top to bottom, ie, from 
S1 to S3 in all tables) have variable impacts on 
the probability of observing negative eigenvalues 
(table 1), and/or on the accuracy of alignments 
(table 2), and/or on the level of divergence among 
sequences (tables 3 and 4). For sequences simu-
lated on the shortest tree (T0), all inferred align-
ments are correct (table 2) and are characterized by 
an average of 44% of columns with identical sites 
(table 3) and an average of 31.7% different sites 
between pairwise terminal sequences. As shown in 
table 2, simulation on longer trees (T1–T3), yield 
sequences that can be easily aligned (as shown by 
the low frequency of wrong alignments and high 
CS scores). One notable exception is the combina-
tion of settings T3/S3, under which alignments are 
essentially unreliable (table 2) and characterized by 
an average of 61% pairwise sequence divergence
(table 4).

Although the probability of observing negative 
eigenvalues follows a general trend similar to that 
of alignment inaccuracy (ie, increased frequency 
of negative eigenvalues with increasing tree length 
and increasing difference between R matrices), 
the problem of negative eigenvalues is more 
quickly acute. Indeed, with 200 nucleotide-long 
sequences, the mean frequency of observing at 
least one negative eigenvalue reaches an average 
of 64–77%, 89–98%, and 100% for T1, T2, and 
T3, respectively (table 1). In other words, although 
alignment inference can be excellent (eg, under 
T1 or T2; table 2), many pairwise comparisons 
can lead to negative eigenvalues (table 1). The 
situation is only slightly less dramatic for 1000 
nucleotide-long sequences: the mean frequency of 
observing a negative eigenvalue reaches an average 
of 11–18%, 68–70%, and 99–100% for T1, T2, and 
T3, respectively (table 1).

In an attempt to characterize the delayed appear-
ance of negative eigenvalues for longer sequences, 
we demonstrate in the Appendix that (i ) for a two 
state system, negative eigenvalues appear when 
25% of the sites differ, irrespective of the
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sequence length, and (ii ) for a four state system, 
the frequency of  negative eigenvalues decreases 
with sequence length (for a fi xed level of pairwise 
divergence) and increases with time divergence 
and/or substitution rate (for a fixed sequence 
length). These relations are illustrated in table 1: 
the closest pairs of sequences (seq3 vs. seq4 and 
seq5 vs. seq6 in tree T1; seq3 vs. seq4 in tree T3) 
yield the lowest frequency of negative eigenvalues. 
Similarly, in tree T2, the frequency of negative 
eigenvalues for 200 base-long sequences increases 
from 15–37% for sequence pairs characterized by 
a sum of branch lengths = 12 (seq3 vs. seq4, seq4 
vs. seq6, and seq5 vs. seq6 ) to 59–73% for sequence 
pairs characterized by a sum of branch lengths = 20 

(seq3 vs. seq5). The same trend is present but partly 
masked (probably because of very high diver-
gences among sequences) for T3.

Simulations with indels
Again, we consider here three R matrix combina-
tions (S1 to S3) and four different tree lengths 
(T0 to T3). As we limited the maximum number 
of insertion/deletion events according to branch 
lengths (cf  Material and Methods), the maximal 
number of 1- or multiple-base indels (for 
branches 1,2,3,4,5,6; fi gure 1) are: 0,0,1,1,1,1 for 
T0, 1,1,1,1,1,1 for T1, 1,1,3,1,3,1 for T2, and 
2,1,3,4,3,5 for T3. The results compiled in table 
2 indicate that, when considering that sequences 
experience insertion/deletion events, ClustalW 
yields 7–22% of incorrect alignments for T0 and at 
least 90% incorrect alignments for T1 and above. 
However, one must moderate this statistics by the 
observation that CS scores are reasonably high 
(above 0.9) for all conditions except S3/T3 (where 
CS = 0.123). Hence, as in the simulations that 
do not implement the insertion/deletion process, 
we observe here that a non-trivial probability of 
observing negative eigenvalues is reached well 
before genuine alignment problems arise. Finally, 
the relations between, on one hand, the number of 
negative eigenvalues and, on the other hand, time 
divergence and substitution rates are very similar 
to those observed using simulations without inser-
tion/deletion events.

 T0 T1 T2 T3
 f  CS�  CSsd f   CS�  CSsd f  CS�   CSsd f  CS�    CSsd
S1 200 0 1.000 0.000 0 1.000 0.000 0.02 0.999 0.006 0.02 0.999 0.005
 200ext 0 1.000 0.000 0 1.000 0.000 0.01 1.000 0.004 0.05 0.997 0.013
 1000 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0.08 0.998 0.008
 200ID 0.17 0.985 0.011 1 0.952 0.028 0.99  0.958 0.025 1 0.928 0.033
S2 200 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0.03 0.998 0.010
 200ext 0 1.000 0.000 0.01 0.999 0.009 0 1.000 0.000 0.04 0.998 0.010
 1000 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0.07 0.999 0.005
 200ID 0.22 0.988 0.009 0.98 0.966 0.020 0.97 0.956 0.026 1 0.907 0.044
S3 200 0 1.000 0.000 0.1 0.991 0.031 0.05 0.996 0.019 1 0.127 0.175
 200ext 0 1.000 0.000 0.09 0.995 0.016 0.07 0.996 0.018 1 0.147 0.215
 1000 0 1.000 0.000 0.18 0.996 0.010 0.18 0.996 0.010 1 0.069 0.083
 200ID 0.07 0.974 0.016 0.9 0.969 0.033 1 0.914 0.058 1 0.123 0.160

Table 2. Accuracy of sequence alignments using ClustalW (Thompson et al. 1994). Frequency (f ) of wrong 
alignments, mean (CS�  ) and standard deviation (CSsd) of the CS scores (100 simulations). Values are color-coded 
as follows: f = 0, 0 < f ≤ 0.9 and 0.9 < f.

Table 3. Percentage and standard deviation of identical 
columns in the multiple alignments.

 T0 T1 T2 T3
S1 200 45 4 25 3 20 2 15 2
 200 ext 43 4 26 3 20 3 15 2
 1000 44 2 26 1 20 1 15 1
S2 200 46 4 26 3 19 3 15 3
 200 ext 44 3 26 3 20 3 15 2
 1000 44 2 26 2 20 1 15 1
S3 200 44 4 23 3 18 2 13 2
 200 ext 43 3 24 3 18 3 13 3
 1000 43 2 24 1 18 1 13 1
 average 44  25  19  14
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Conclusion
Our analyses indicate that negative eigenvalues 
can be considered, from a practical point of 
view, a problem for phylogeny inference as they 
appear before homology assessment problems 
(ie, multiple alignment problems) arise. Indeed, 
our comparisons between true and inferred align-
ments (table 2) show that, with the exception of the 
combination T3/S3 (longest tree with a large shift 
in relative substitution rates), simulated sequences 
can be aligned with high accuracy (ie, > 90% of 
the sites are correctly aligned) whereas F# yields 
negative eigenvalues (table 1) – hence an unde-
fi ned logarithmic function and inapplicable GTR 
model – with high frequencies, even for tree T1, ie,
for sequences still far from saturation. The values 
of alignment accuracy (CS) computed here might 
even be underestimated as alternative algorithms 
to ClustalW may give more accurate alignments 
is some conditions (Loytynoja and Milinkovitch 
2003, Gardner et al. 2005, Hickson et al. 2000, 
Loytynoja and Milinkovitch 2001). Furthermore, 
although this is rarely mentioned, real datasets 
can produce negative eigenvalues. For example, 
the comparison of human and cow cytochrome 
b gene third positions (Lanave et al. 1984) yields 
one negative eigenvalue (1, 0.423996, – 0.137941, 
0.111731).

Our results under cases S2 and S3, suggest 
that violation of the homogeneity assumption 
increases the risk of observing negative eigen-
values. This point is of particular pertinence if 
homogeneity (classically used in most of the 
current implementations of the GTR model, ie, a 
single R matrix is used for the whole tree) is an 
invalid assumption.

Our simulations also show that the length of a 
DNA dataset infl uences the probability of occur-
rence of negative eigenvalues in P: different 
pairs of sequences with similar divergences may 
have very different probabilities of yielding 
negative eigenvalues, depending on the length 
of the sequences (eg, using T1, the frequency 
of observing at least one negative eigenvalue is 
11–18% and 72–77% for 1000 and 200 character-
long alignments, respectively; table 1). This result 
indicates that the relation between sequence length 
and probability of observing a negative eigenvalue 
is not linear such that using even longer sequences 
might effectively reduce the number of cases 
where the Waddell and Steel (1997) procedure is 
not applicable. A method on how modifying P to 
make the GTR model always applicable as well 
as a discussion on the mathematical basis for the 
non-linear relationship between sequence length 
and probability of negative eigenvalues occurrence 
is given in (Catanzaro et al. 2006). Note that, as 
we are using a four-state model of substitutions, 
we exclude gap-containing sites before computing 
eigenvalues, pairwise divergences, and other 
statistics.

As mentioned above, methods for computing 
a unique R matrix for the whole tree have been 
described. Yang and Kumar (1996), for example, 
suggested to average the pairwise F# matrices before 
calculating a global R, but this procedure is not
immune to the above-mentioned problems 
(cf  introduction). As currently implemented, opti-
mization methods like PAUP* (Swofford 2003) 
or MrBayes (Ronquist and Huelsenbeck 2003) 
directly estimate one R matrix using optimization 
techniques under maximum likelihood without 
the need of calculating log(P). However, infer-
ence using a model based on a single R for the 
whole tree will likely lead to underoptimization 
of local instantaneous relative substitution rates, 
whereas a model based on an R matrix for each 
tree edge will yield the best relative substitution 
rates for the corresponding pair of internal or tip 
sequences. The use of this second kind of models, 
eventhough computationally more intensive, 
could yield more accurate P(t) matrices for better 
maximum likelihood estimations, and also relaxes 
the possibly inappropriate assumption hypothesis 
of homogeneity along the whole tree. Such a more 
complex model might not provide signifi cant gain 
for less divergent datasets, but should perform 
better for divergent ones. Note that it remains to be 

Table 4. Percentage and standard deviation of mean 
pairwise divergence among tip sequences.

 T0 T1 T2 T3
S1 200 31 5 43 5 46 4 51 4
 200 ext 32 5 42 5 47 4 51 4
 1000 31 4 43 4 47 3 51 2
S2 200 30 5 43 5 47 4 52 4
 200 ext 31 5 43 5 47 4 52 4
 1000 31 4 43 4 47 2 52 2
S3 200 32 5 47 6 50 5 61 11
 200 ext 33 5 46 6 50 5 61 11
 1000 33 4 46 5 51 4 61 11
 average 31.7 43.9 47.9 54.6
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investigated, using AIC (Akaike 1974) or Likeli-
hood Ratio tests (Gaut and Weir 1994), whether the 
CPM model should be preferentially used against 
other procedures robust against heterogeneous 
base composition across the tree (logdet model, 
Lockhart et al. (1994)) or allowing for variation of 
site-specifi c rates among lineages (Galtier 2001).

Note that the one-R-per-edge approach can also 
be applied in a maximum likelihood or Bayesian 
framework. In such a case, and assuming the 
methods implemented for parameter optimiza-
tion are highly effi cient, the optimal tree topology 
should converge towards the tree obtained by the 
CPM method (Catanzaro et al. 2006). The relative 
effi ciencies of these different approaches clearly 
warrants further investigation.

In conclusion, we show here that datasets char-
acterized by net transition probability matrices (P) 
with negative eigenvalues (making the GTR model 
or logdet correction not-applicable) can be consid-
ered a real practical issue. We also show that both 
variable R matrices across the tree and sequences 
length do infl uence the probability of observing 
negative eigenvalues, hence, of making the GTR 
model not applicable. These results suggest the 
need for methods (such as CPM, (Catanzaro 
et al. 2006)) that modify P for removing negative 
eigenvalues while still describing a biologically 
meaningful substitution process.
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Appendix

On the relationship between
sequence length and occurrence of 
negative eigenvalues
Theorem. Let’s consider two sequences, s1 and 
s2 ∈ Σ = {X, Y}, of two-state characters where 
Σ = {X, Y} is the set of all possible DNA sequences 
having length l. When the number of differences 
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between s1 and s2 is greater than 0.25*l, then F# 
will be characterized by at least one negative 
eigenvalue.
Proof. Let’s consider the divergence matrix 
(Waddell and Steel 1997) F of s1 and s2

 
F =

⎛

⎝
⎜

⎞

⎠
⎟

a b
c d   

(7)

and its symmetrized form

  
F# =

⎛

⎝
⎜

⎞

⎠
⎟

a e
e d  

(8)

where e = (b + c)/2. Since

 a + b + c + d = l (9)

that is

 a + d + 2e = l  (10)

then F# can be rewritten as

  
F# =

− −
⎛

⎝
⎜

⎞

⎠
⎟

a e
e l a e2  

(11)

The symmetric matrix F# is positive defi nite (ie, 
characterized by strictly positive eigenvalues) 
if and only if the Sylvester’s criterion (Press 
et al. 2002) is satisfi ed:

 a > 0 (12)

 a ( l – a – 2e) > e2 (13)

(12) imposes that the number of equal characters 
among s1 and s2 must be a positive number; while 
(13) can be modifi ed as follows:

 (e + a)2 < al (14)

that is (by excluding negative solutions because 
they have no physical meaning)

  e al a< −  (15)

By considering l assigned, the maximum number 
of different characters between s1 and s2 for which 
F# is still characterized by positive eigenvalues can 
be obtained by deriving (15) with respect to a:
 

  

∂
∂

= − + ==a
e l

all const| 1
2

0
 

(16)

obtaining so

 a = l/14 (17)

By substituting (17) in (15) we fi nd that l/4 is the 
maximum value that e (the number of differences 
between s1 and s2) can take such that F# is still 
characterized by positive eigenvalues. The relation 
e < l/4 is a necessary, although not suffi cient condi-
tion for F# to be characterized by positive eigen
value. Q.E.D. 

When analyzing four state-character sequences, 
the matrix F becomes:

 

F =

f f f f
f f f f
f f f f
f f f f

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠⎠

⎟
⎟
⎟
⎟⎟

  

(18)

By calling F# the symmetrized form of the diver-
gence matrix F, the maximum number of differ-
ences between two sequences of length l such that 
F# is characterized by strictly positive eigenvalues 
can be obtained by solving the following non-linear 
optimization problem (Bertsekas 1999):

    maximize fij
i j

#

¹
∑  (19)

       
s t f l

i
ij

j
. .

... ...= =
∑ ∑ =
1 4 1 4  

(20)
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 Det Fk( ) ,# > 0    k = 1...4 (21)

where  Fk
# is the k-order minor of F#. Constraint (20) 

imposes that the sum of the fij must be equal to the 
length of the sequences; constraint (21) imposes 
the Sylvester’s Criterion (Catanzaro et al. 2006). 
The two state-characters condition is nested in 

the above formulation and represents an underes-
timation of the maximum number of differences. 
In other words, when analyzing a pair of four-state 
character sequences, if the number of differences 
between the two sequences is smaller than l/4 then 
the matrix F# cannot be characterized by negative 
eigenvalues.
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