Paraneoplastic Manifestations of Lymphoproliferative Neoplasms

Pavankumar Tandra1, Aavyakta Kallam1, Mounika Guduru2, Venkata Sunil Bendi2, Jairam Krishnamurthy3 and Philip Bierman1

1Hematology-Oncology Division, Internal Medicine Department, University of Nebraska Medical Center, Omaha, NE, USA. 2Shenandoah Medical Center, Shenandoah, IA, USA. 3Oncology Division, Medical Oncology Section, Washington University Medical School, St. Louis, MO, USA.

ABSTRACT: Paraneoplastic syndromes, although rare, have been associated with lymphoproliferative disorders. Hodgkin's lymphoma (HL) is the most common lymphoid neoplasm known to cause paraneoplastic syndromes. These syndromes can often be the earliest manifestation of the underlying malignancy, and treating the underlying lymphoma can cure the paraneoplastic disease. Paraneoplastic diseases reported in lymphoid malignancies can be broadly classified into hematological, neurological, and dermatological syndromes based on the organ systems that are predominantly involved. In addition, renal and hepatobiliary involvement has also been reported. The pathogenesis of the hematological paraneoplastic conditions primarily involves the production of autoantibodies by the neoplastic lymphocytes, which then subsequently leads to cytopenias. Cytoses are a result of cytokine produced by the neoplasms. The administration of corticosteroids along with chemotherapy for the underlying malignancy is the treatment of choice. Neurological paraneoplastic phenomena have been reported in both HL and non-Hodgkin's lymphoma (NHL). They are thought to be secondary to an immune-related process that is triggered by the underlying process. Both the central and the peripheral nervous systems can be affected. Often, treatment of the underlying malignancy with chemotherapy can result in reversal of the paraneoplastic syndrome. In peripheral neuropathies, muscle relaxants and analgesics are often used for symptomatic relief. Dermatological manifestations, pemphigus vulgaris in particular, often precedes the malignancy. Renal and hepatobiliary manifestations, although rare, are also associated with lymphomas.

KEYWORDS: lymphoproliferative neoplasms, paraneoplastic, lymphoma, neurological manifestations of lymphoma, hematological manifestations of lymphoma

Introduction

The term paraneoplastic syndrome refers to the clinical manifestations that are not directly related to the tumor burden, tumor invasion, or metastases, but are caused by the secretion of tumor cell products such as hormones, growth factors, cytokines, and tumor antigens.1 These are rare in lymphoid neoplasms. Hodgkin's lymphoma (HL) is the most common lymphoma associated with a variety of paraneoplastic phenomena affecting multiple organ systems.

Paraneoplastic syndromes may present at the diagnosis, develop later in the course of the disease, or at the relapse of the lymphoma. Treating the underlying lymphoma cures the paraneoplastic disease in many cases. However, some patients may need immunosuppressive therapy.

In this review, we discuss various paraneoplastic syndromes associated with lymphoid neoplasms, pathogenesis, clinical features, diagnosis, and their management Figure 1.

Hematological Paraneoplastic Phenomena

Autoimmune cytopenias. The most common hematologic paraneoplastic phenomena in lymphomas are autoimmune hemolytic anemia (AIHA) and autoimmune thrombocytopenia (AITP). Autoimmune neutropenia (AIN) is rare. Chronic lymphocytic leukemia (CLL) is the most common lymphoproliferative disorder associated with autoimmune cytopenias. Non-Hodgkin’s lymphoma (NHL) and HL can also cause cytopenias.

The pathogenesis of autoimmune cytopenias involves the production of autoantibodies to the erythrocytes and platelets by the neoplastic and non-neoplastic lymphocytes.2,3 In AIHA, the production of autoantibodies results from both T-lymphocyte dysfunction and malignant B lymphocytes. Malignant B lymphocytes act as antigen-presenting cells and introduce the antigen to the T-helper cells, leading to their activation. The activated T-helper cells mediate antibody production by the B lymphocytes. The Rh antigens on the surface of the red blood cells produce these antibodies and destroy the red blood cells.4,5 In CLL, nonmalignant B-cells produce 90% of autoantibodies rather than malignant B-cells.6 Platelet surface glycoprotein antigens Ib/IX and IIb/IIIa produce these antibodies.7,8 These are polyclonal and immunoglobulin subtype G (IgG) in nature. In 10% of cases, the mechanism
is similar to cold hemagglutinin disease, where the malignant B-cells produce monoclonal antibodies of IgM subtype. There is evidence to suggest that the suppression of Treg cells also leads to autoimmunity in CLL, especially in fludarabine-related autoimmunity.

AIN is extremely rare and is often a diagnosis of exclusion. The pathogenesis of AIN is not well studied. One of the proposed mechanisms is the production of antineutrophil antibodies leading to agglutination of neutrophils, phagocytosis, and complement-mediated neutrophil destruction. Large granular lymphocytic leukemia, hairy cell leukemia, and HL can cause AIN. In CLL, fludarabine, rituximab, and alemtuzumab have also been associated with AIN.

Warm AIHA is more common than cold AIHA (cold agglutinin disease). AIHA is more common in NHL than in HL. AIHA has an incidence of 3%–5% in NHL and 0.2%–2% in HL. In one report, seven out of 71 patients with HL had positive direct Coombs test, and all of them had advanced stage (stages III and IV) disease. Although all of them have anemia, only three of them have clear evidence of overt hemolysis. Three patients have the antibody responsible (IgG anti-It) for Coombs positive hemolysis.

In contrast to AIHA, AITP appears to be more common in HL compared to NHL. The incidence of AITP has been estimated to be 1%–2%. AITP presents with thrombocytopenia unrelated to the underlying lymphoproliferative disorder. It is usually a diagnosis of exclusion. Isolated thrombocytopenia without anemia is more likely to be autoimmune in origin. Demonstration of increased bone marrow response to thrombocytopenia by the production of megakaryocytes confirms the diagnosis. Bone marrow biopsy shows normal or increased megakaryocytes with immature forms. Response to the trial of an intravenous immunoglobulin (IVIg) or corticosteroids can confirm the diagnosis if the bone marrow is inconclusive. Thirty percent of cases of AITP also have simultaneous AIHA (Evans syndrome).

In contrast, AIN is extremely rare and difficult to diagnose with certainty. It is a diagnosis of exclusion, and it should be suspected when there is persistent and prolonged absolute neutropenia, and bone marrow examination demonstrates a failure of the neutrophil production or maturation arrest.

Therapy of autoimmune cytopenias should include treatment for the underlying lymphoproliferative disorder as well as specific measures for the treatment of cytopenias. It may involve replacement of packed red cells and platelets in case of an emergency. IVIG and nonphysiologic doses of steroids are alternative treatment strategies. The mechanism of IVIG in improving the cytopenias is unknown. The B-cell mediated effects of IVIG such as inhibition of antibody production, inhibition of B-cell differentiation, and induction of B-cell apoptosis may play a role (Table 1).

**Eosinophilia and thrombocytosis.** Paraneoplastic eosinophilia and tissue eosinophilia are reported in lymphoproliferative disorders, most commonly in HL and T-cell lymphomas. There are also reports of eosinophilic infiltration of skin (eosinophilic fasciitis), lung, and gastrointestinal tract.
Table 1. Rare Hematological paraneoplastic phenomena reported in the literature.

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>PN SYNDROME</th>
<th>NO.</th>
<th>ASSOCIATION</th>
<th>OTHER FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(149)</td>
<td>AIHA</td>
<td>2</td>
<td>HL</td>
<td>Minimum tumor load of HL was undetected and one patient died and diagnosis was found at autopsy</td>
</tr>
<tr>
<td>(150)</td>
<td>Cyclic AIHA</td>
<td>1</td>
<td>Splenic HL</td>
<td>Splenectomy resolved AIHA</td>
</tr>
<tr>
<td>(151)</td>
<td>Transient bone marrow Aplasia</td>
<td>1</td>
<td>HL</td>
<td>Reversed with combination chemotherapy</td>
</tr>
<tr>
<td>(152)</td>
<td>Positive coombs test</td>
<td>7/71</td>
<td>HL</td>
<td>Associated with antibody IgG anti-It</td>
</tr>
<tr>
<td>(153, 154)</td>
<td>Microcytic anemia</td>
<td>1</td>
<td>HL</td>
<td>2 case reports &amp; review of 162 patients. IDA and B-Thalassemia most common</td>
</tr>
<tr>
<td>(155)</td>
<td>Deficiency of coagulation factors VII and XII</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(156)</td>
<td>Hypo fibrinogenemia</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(157)</td>
<td>Fibrinolysis and proteolysis</td>
<td>1</td>
<td>Lymphoma</td>
<td></td>
</tr>
<tr>
<td>(158)</td>
<td>Acquired Factor VIII inhibitor deficiency</td>
<td>1</td>
<td>Lymphoma</td>
<td></td>
</tr>
<tr>
<td>(152)</td>
<td>Positive coombs test</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(153, 154)</td>
<td>Microcytic anemia</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AIHA, Auto Immune Hemolytic Anemia; HL, Hodgkin's Lymphoma; IDA, Iron Deficiency Anemia.

IL-5 appears to play a significant role in the eosinophilic disorders. Patients with HL are reported to have high eosinophil counts and serum IgE compared to age- and sex-matched controls. Fludarabine and cladribine, the drugs used in the treatment of CLL, can also cause eosinophilia.

Sixteen percent of patients with NHL and 21%-24% of patients with HL can present with thrombocytosis. Although the underlying mechanism is unclear, it has been hypothesized that several tumor-derived cytokines, particularly interleukin 6 (IL 6), IL 1, and IL 3 could be responsible for thrombocytosis.

Coagulopathies. Coagulopathies in lymphoproliferative disorders include inhibitors of coagulation factors. These usually include either specific inhibitors of the individual coagulation factors or global inhibitors of the coagulation system such as antiphospholipid antibodies.

Several case reports in the literature suggest acquired inhibitors of factor VIII (acquired hemophilia). Von Willebrand factor, and glycoprotein IIb/IIIa (Glanzmann's thrombasthenia) in lymphoproliferative diseases. Antiphospholipid antibodies are present in up to 26.6% (24 of 90) of NHL patients. None of the patients in this study developed thrombosis related to antiphospholipid antibodies.

Neurological Paraneoplastic Phenomena

Paraneoplastic disorders of the nervous system are thought to be secondary to an immune-related process triggered by the underlying lymphoproliferative disorder. The neurons are the targeted antigens. The identification of these antineuronal or onconeural antibodies has revolutionized the understanding of these diseases.

Central nervous system paraneoplastic disorders.

Paraneoplastic limbic encephalitis (PLE) is very rare. It is characterized clinically by personality changes such as irritability, memory loss, depression, and, sometimes, frank psychosis. Temporal lobe involvement causes generalized or complex partial seizures in up to 50% of the patients. The symptoms usually precede the diagnosis of the lymphoma.

In a report by Gultekin et al, the diagnosis of the PLE requires either pathological confirmation or presence of four clinical criteria. The clinical criteria include a compatible clinical picture, an interval of fewer than four years between the neurological symptoms and the diagnosis of the tumor, an exclusion of the other neuro-oncological complications, and one of the following laboratory findings. Negative cytology with evidence of inflammation in the cerebrospinal fluid (CSF), temporal lobe abnormalities on magnetic resonance imaging (MRI), and epileptic activity in the temporal lobes on the electroencephalogram (EEG). In this series, HL is the fourth most frequent (4%) association with PLE after lung (50%), germ cell tumors (20%), and breast cancer (8%). Lymphoma has not identified specific onconeural antibodies in this report.

The association of the PLE with HL is known as Ophelia syndrome. Dr. Carr described an insidious neuropsychiatric degeneration in his 15-year-old daughter who suffered from HL. Antibodies against mGLUR5 (metabotropic glutamate receptor 5) are present in Ophelia syndrome. Lymphoma also causes an acute severe diffuse paraneoplastic encephalitis. In one such case report, treatment with Adria-mycin, Bleomycin, Vinblastine, and Dacarbazine (ABVD) dramatically improved mental status in a patient of HL suggesting a paraneoplastic phenomenon.

The diagnosis of PLE requires clinicopathological, neuroradiological, EEG, and CSF confirmation as recommended by Gultekin et al as abovementioned. It is important to apply this criterion to avoid misdiagnosis of PLE among patients presenting with similar symptoms.
The treatment of PLE involves treating the HL. The prognosis is good, and the treatment often leads to full recovery\textsuperscript{36,37} because it is due to reversible neuronal dysfunction caused by the pathogenic mGluR5 antibody rather than neuronal death.\textsuperscript{39}

PLE is exceedingly rare in NHL.\textsuperscript{39} In two cases of renal NHL presenting as PLE, removal of the primary renal lymphoma in one patient\textsuperscript{40} and treatment with rituximab, cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP) and intrathecal methotrexate in the other patient led to complete neurological remission.\textsuperscript{41} In another case report, the patient presented with a transformed NHL and PLE with pathognomonic MRI features and treatment with chemotherapy resulted in a full neurological recovery.\textsuperscript{42} None of these NHL patients had pathogenic onconeural antibodies.

**Paraneoplastic cerebellar degeneration.** Paraneoplastic cerebellar degeneration (PCD) is common in lung and breast cancer. However, HL can also cause PCD.\textsuperscript{43} The pathological hallmark of PCD is a severe loss of cerebellar Purkinje cells resulting in a subacute pan cerebellar dysfunction. This pattern is distinct from that of PCD with gynecologic cancer (associated with anti-Yo) or small-cell lung cancer (SCLC) (associated with anti-Hu).\textsuperscript{44}

PCD antedates the diagnosis of HL in ~80% of the cases.\textsuperscript{45} It can also develop after the diagnosis of HL is established or during remission.\textsuperscript{44} Dizziness, vomiting, and vertigo are the initial symptoms. They can also present with dysarthria, diplopia, and downbeat nystagmus. These symptoms can rapidly progress to severe symmetrical truncal and limb ataxia. CSF examination is not diagnostic and shows moderate pleocytosis.

MRI studies usually show cerebellar atrophy. Trotter et al first detected the pathognomonic antibodies (Tr antibodies),\textsuperscript{46} and these can be found both in the serum and CSF. DNER (Delta/Notch-like epidermal growth factor-related receptor) is the antigen for the Tr antibody.\textsuperscript{47,48} Purkinje cell dendrites preferentially express these DNER transmembrane antigens. Unlike other paraneoplastic antigens, they have not been identified in tissue samples of HL. It suggests that the ectopic secretion of the antigen does not trigger the immune responses.\textsuperscript{39} Two patients with HL, after a few years of their diagnosis, present with PCD related to a different antibody, mGluR1 (metabotropic glutamate receptor type 1). However, subsequent reports have not confirmed this association.\textsuperscript{49,50}

Treatment of PCD involves treating the underlying HL. PCD associated with DNER Ag (in HL) does not respond as well when compared to the PCD related to other cell membrane antigens in other tumors.\textsuperscript{51} Two large case series about the treatment of PCD in HL were published in the literature.\textsuperscript{44,45} In one series of 21 patients, neither plasmapheresis (7 of 21) nor immunosuppressive agents including steroids (8 of 21) were helpful. Spontaneous resolution was reported (2 of 21), and improvement with clonazepam helped one patient. Also, seropositive patients did not differ clinically from seronegative patients. When these two reports were combined (a total of 49 patients), 7 (14%) had full or partial neurological recovery and the Tr (to DNER Ag) antibody titers usually disappear after treatment of the HL.

**Paraneoplastic chorea.** A chorea is a form of dyskinesia defined as brief, abrupt, irregular, unpredictable, and nonstereotyped movements.\textsuperscript{52} In milder cases, they may appear purposeful, affect various body parts, and interfere with speech, swallowing, posture, and gait. In contrast, athetosis is a more distal, slower, writhing, and abnormal movements. In a more severe form called ballism, choreiform movements appear wild and violent and may involve flinging of a body part, causing injuries. MRI brain may show the hyperintensity of caudate nuclei and putamen.

Paraneoplastic chorea (PC) is very rare. In the PNS EuroNetwork experience, only five cases of PC (four due to NHL and one due to HL) secondary to lymphomas have been reported.\textsuperscript{53} PC is associated with CV2/Collapsin response mediator protein 5 (CRMP5) antibodies regardless of the tumor association. Finding these antibodies, when present, is a very helpful diagnostic clue,\textsuperscript{54} as up to 50% of the patients may not have any onconeural antibodies. The treatment of PC involves immunotherapy and treating the underlying lymphoma; however, a complete remission is rarely achieved.

**Paraneoplastic stiff-person syndrome.** Paraneoplastic stiff-person syndrome (SPS) is a very rare central nervous system (CNS) paraneoplastic disorder characterized by progressive rigidity and spasms of the axial musculature leading to deformities. Electrophysiology studies reveal continuous co-contraction of the agonist and antagonist muscles, caused by the involuntary and continuous firing of the motor unit potentials at rest. Less than 1% of patients with this disease have an underlying malignancy.\textsuperscript{55} Glutamic acid decarboxylase (GAD) antibodies are usually present in SPS.\textsuperscript{56}

A related disorder, progressive encephalomyelitis with rigidity and myoclonus (PERM) causes stiffness and stimulus-sensitive spasms of the muscles leading to brain stem dysfunction. The pathology reveals perivascular lymphocyte cuffing and loss of neurons in the brain stem. Glycine receptor antibodies may be present in some patients with this disease.\textsuperscript{57} In five case reports of PERM published in the literature, none of the patients have pathogenic antibodies, and all of them recovered neurologically after their HL was treated successfully.\textsuperscript{58–61} Treatment is usually conservative with skeletal muscle relaxants such as Baclofen or benzodiazepines.

**Paraneoplastic granulomatous angiitis.** Paraneoplastic granulomatous angiitis (PGA) of the CNS is a rare cause of neurological deterioration in lymphomas. It is a difficult diagnosis to make and often diagnosed posthumously.

It is characterized histologically by necrotizing inflammation of the walls of small arteries and veins with deposition of noninfectious granulomas composed of lymphocytes, monocytes, and plasma cells.\textsuperscript{62} In the CNS, leptomeningeal vessels are usually affected. Although the herpes virus may be a possible etiology for PGA in some cases, viral particles
are not found in the affected blood vessels, supporting an autoimmune mechanism.63

Clinically, patients usually complain of headaches, altered mental status, cognitive decline, and focal neurological symptoms. CSF reveals pleocytosis with lymphocytosis, and MRI shows bilateral leukencephalopathy and perivascular gadolinium-enhancing lesions.64 HL is the frequent association with PGA. A review of the literature revealed 12 cases of PGA with HL. They usually have a poor prognosis. In one report, six patients were treated aggressively for both angiitis and HL. Three patients recovered fully, two had a partial recovery, and one died.65 Studies have shown associations with Sjögren’s syndrome, human immunodeficiency virus infection, and herpes zoster virus (HZV) infection. Therefore, these should be considered in the differential diagnosis.

Paraneoplastic opsoclonus-myoclonus-ataxia syndrome. Opsoclonus-myoclonus-ataxia syndrome (OMAS) is characterized by irregular, chaotic, large amplitude conjugate saccades in all directions of gaze and diffuse myoclonus.66 Myoclonus often involves the trunk, head, limbs, and facial muscles causing truncal ataxia, dysarthria, and in some, confusion and coma.

OMAS can result from a wide variety of reasons that include infectious and idiopathic causes apart from the paraneoplastic syndromes. Neuroblastoma in children and breast, gynecological, and SCLC in adults are the tumors usually associated with PMAS. Several case reports67 have suggested an association with lymphomas. Out of these, two of the cases may be secondary to direct effects of the intracranial tumor itself and cannot be considered paraneoplastic.68 In one report,69 symptoms developed seven weeks after an autologous hematopoietic stem cell transplantation for a relapsed HL and a postinfectious etiology could have been possible. Anti-Ri antibodies characterize breast and gynecological cancers with OMAS, but none is present in lymphomas.

Peripheral nervous system (PNS) paraneoplastic disorders. Peripheral neuropathy related to lymphomas has a broad differential diagnosis.70 Infections such as HZV, chemotherapeutic drugs (vinca alkaloids), direct damage to the neuron bodies (neuronopathy), compression or infiltration of nerves by the lymphoma (lymphomatosis), and radiation-related neuropathy are the usual differential diagnoses. Vasculitis of the vasa nervorum, inflammation, and demyelination are the other causes. Demyelination can be acute (Gulliain Barre Syndrome [GBS]) or chronic (chronic inflammatory demyelinating polyradiculopathy [CIDP]).

Paraneoplastic sensorimotor neuropathy. Both HL and NHL can present with paraneoplastic sensorimotor neuropathies. In one case series, the authors identified four subgroups based on the pathophysiology of the underlying neuropathy in NHL.71 These include neurolymphomatosis, autoimmune neuropathy caused by monoclonal IgM with anti-myelin activity, inflammatory or demyelinating neuropathy, and a group in whom the peripheral neuropathy is almost certainly related to the NHL (likely a paraneoplastic process). In another report72 evaluating the clinicopathological features of neuropathy in lymphoma, 15 of 32 patients have neurolymphomatosis, and only five patients have paraneoplastic neuropathy.

The demyelinating neuropathies in lymphoma fulfill the criteria of either acute (GBS) or chronic (CIDP) inflammatory demyelinating polyneuropathies. Anti-neuronal antibodies are negative in these patients. Both HL73–75 and NHL76–79 can cause paraneoplastic GBS. Neurolymphomatosis are asymmetric or show a pattern of multifocal mononeuropathy like CIDP and respond to steroids. They are distinguished from CIDP by the demonstration of malignant cells in the nerve biopsy or more rarely in the CSF.

Paraneoplastic neuronopathy. Clinical manifestations that occur due to direct damage to the cell bodies of the neurons are called neuronopathy. They can affect a particular neuronal type causing a pure motor, sensory, and autonomic or can affect multiple cell types leading to a mixed neuronopathy. They are associated mostly with SCLC in association with anti-Hu antibodies. They are rare in lymphomas and have been reported predominantly in association with HL.

Pure motor neuronopathy. Patients with this disorder report weakness of the legs and proximal muscles. HL is almost always the underlying lymphoma. In 1979, the first report of a subacute motor neuronopathy was published in 10 HL patients.80 It is rarely severe and in some patients, it improves without any treatment. Sometimes, they need IVIG and chemotherapy.81 It can present at the time of diagnosis or while the disease is in remission. Although an irreversible loss of spinal cord anterior horn neurons may be the underlying pathophysiology, clinical improvement in some patients suggest that other mechanisms such as reversible loss of function of the neurons may play a role.81

Pure sensory neuronopathy. It is one of the most common neuronopathies caused by damage to the neuron bodies in the dorsal root ganglia. Patients present with subacute pain and paresthesia in the extremities. The sensory loss is asymmetrical and proximal (neck and trunk), and severe impairment of the position and vibration senses is present. Electrophysiology studies and nerve conduction velocities confirm the involvement of the sensory nerves. The prognosis is usually poor with rare responses. It usually occurs in SCLC in association with anti-Hu antibodies.39 Among lymphomas, HL is the frequent association.82–85 Antibody tests are usually negative. Unlike dorsal column ganglionitis associated with SCLC, sensory-evoked potentials were not abolished in lymphoma-related neuronopathy. Nerve biopsy studies reveal axonal degeneration and perivascular inflammatory infiltrates.

Pure autonomic neuronopathy. In this exceptionally rare paraneoplastic disease of lymphomas, patients usually present with pandysautonomia (both sympathetic and parasympathetic dysfunction). Sympathetic system symptoms include anhydrosis, postural hypotension, and recurrent syncopes. Parasympathetic symptoms include sicca syndrome.
OTHER FEATURES

1. H.-hL, hodgkins Lymphoma.
2. Ivory Vertebrae (osteosclerotic localized).
3. Isolated sympathetic dysautonomia.
4. Paraneoplastic myelopathy.
5. Paraneoplastic pemphigus vulgaris.
6. Neoplastic Meningitis with eosinophilic pleocytosis.
7. Acute diffuse encephalitis.
8. Isolated sympathetic dysautonomia.
10. Brachial plexopathy.
11. Paraneoplastic pemphigus vulgaris.
13. Brachial plexopathy.
15. Brachial plexopathy.
16. Paraneoplastic myelopathy.
17. Brachial plexopathy.
18. Paraneoplastic myelopathy.
20. Paraneoplastic myelopathy.
22. Paraneoplastic myelopathy.
23. Brachial plexopathy.
24. Paraneoplastic myelopathy.
25. Brachial plexopathy.
27. Brachial plexopathy.
28. Paraneoplastic myelopathy.
29. Brachial plexopathy.
30. Paraneoplastic myelopathy.
31. Brachial plexopathy.
32. Paraneoplastic myelopathy.
33. Brachial plexopathy.
34. Paraneoplastic myelopathy.
35. Brachial plexopathy.
36. Paraneoplastic myelopathy.
37. Brachial plexopathy.
38. Paraneoplastic myelopathy.
39. Brachial plexopathy.
40. Paraneoplastic myelopathy.
41. Brachial plexopathy.
42. Paraneoplastic myelopathy.
43. Brachial plexopathy.
44. Paraneoplastic myelopathy.
45. Brachial plexopathy.
46. Paraneoplastic myelopathy.
47. Brachial plexopathy.
48. Paraneoplastic myelopathy.
49. Brachial plexopathy.
50. Paraneoplastic myelopathy.
51. Brachial plexopathy.
52. Paraneoplastic myelopathy.
53. Brachial plexopathy.

ASSOCIATION

1. Neoplastic Meningitis with eosinophilic pleocytosis.
2. Isolated Sympathetic Dysautonomia.
3. Acute Diffuse encephalitis.
4. Ivory Vertebrae (Osteosclerotic localization).

OTHER FEATURES

1. Treatment with corticosteroids helpful.
2. Treatment with corticosteroids helpful.
3. Treatment with corticosteroids helpful.
4. Treatment with corticosteroids helpful.
5. Treatment with corticosteroids helpful.
6. Treatment with corticosteroids helpful.
7. Treatment with corticosteroids helpful.
8. Treatment with corticosteroids helpful.
9. Treatment with corticosteroids helpful.
10. Treatment with corticosteroids helpful.
11. Treatment with corticosteroids helpful.
12. Treatment with corticosteroids helpful.
13. Treatment with corticosteroids helpful.
14. Treatment with corticosteroids helpful.
15. Treatment with corticosteroids helpful.
16. Treatment with corticosteroids helpful.
17. Treatment with corticosteroids helpful.
18. Treatment with corticosteroids helpful.
19. Treatment with corticosteroids helpful.
20. Treatment with corticosteroids helpful.
21. Treatment with corticosteroids helpful.
22. Treatment with corticosteroids helpful.
23. Treatment with corticosteroids helpful.
24. Treatment with corticosteroids helpful.
25. Treatment with corticosteroids helpful.
26. Treatment with corticosteroids helpful.
27. Treatment with corticosteroids helpful.
28. Treatment with corticosteroids helpful.
29. Treatment with corticosteroids helpful.
30. Treatment with corticosteroids helpful.
31. Treatment with corticosteroids helpful.
32. Treatment with corticosteroids helpful.
33. Treatment with corticosteroids helpful.
34. Treatment with corticosteroids helpful.
35. Treatment with corticosteroids helpful.
36. Treatment with corticosteroids helpful.
37. Treatment with corticosteroids helpful.
38. Treatment with corticosteroids helpful.
39. Treatment with corticosteroids helpful.
40. Treatment with corticosteroids helpful.
41. Treatment with corticosteroids helpful.
42. Treatment with corticosteroids helpful.
43. Treatment with corticosteroids helpful.
44. Treatment with corticosteroids helpful.
45. Treatment with corticosteroids helpful.
46. Treatment with corticosteroids helpful.
47. Treatment with corticosteroids helpful.
48. Treatment with corticosteroids helpful.
49. Treatment with corticosteroids helpful.
50. Treatment with corticosteroids helpful.
51. Treatment with corticosteroids helpful.
52. Treatment with corticosteroids helpful.
53. Treatment with corticosteroids helpful.

Abbreviation: HL, Hodgkins Lymphoma.
Paraneoplastic manifestations of lymphoproliferative neoplasms

Pemphigus vulgaris are the major pathogenic antibodies in PPV. The role of cell-mediated immunity in the pathogenesis was supported by its graft versus host disease (GVHD) type immune phenotype and its histological features such as interface dermatitis and keratinocyte dyskeratosis, which are characteristic of T-cell-mediated epithelial damage.

Two-thirds of the patients present with PPV before the diagnosis of their lymphoid malignancy. The differential diagnoses usually include chemotherapy-induced mucositis, mucocutaneous drug reactions, erythema multiforme, cutaneous GVHD, and lichen planus.

Paraneoplastic autoimmune multiorgan syndrome. Patients with this rare multisystem disorder present with severe blistering and painful erosions of the oral cavity and various other cutaneous findings ranging from classic Pemphigus vulgaris-like erosions to targeted lesions. This disorder is clinically similar to erythema multiforme and papular lichenoid eruptions. It has a high rate of mortality due to its pulmonary involvement causing constrictive bronchiolitis obliterans.

The diagnosis of PPV and the paraneoplastic autoimmune multiorgan syndrome is suspected based on the clinical features of painful, progressive stomatitis and other characteristic skin lesions. It is confirmed by its characteristic histopathological findings of acantholysis or lichenoid/interface dermatitis and demonstrating the presence of pathogenic antibodies in the presence of an underlying lymphoid neoplasm. Direct or indirect immunofluorescence microscopy and enzyme-linked immunosorbent assay can confirm the antibodies.

The treatment of PPV in lymphomas involves treating the underlying lymphoma and supportive therapy. Sometimes, resection of the underlying tumor such as thymoma or Castleman’s disease leads to the remission of PPV. However, this may take up to two years after resection. Treatment with high-dose steroids, such as cyclophosphamide, azathioprine, mycophenolate mofetil, and cyclosporine are alternative treatment options. Other strategies include plasmapheresis, alemtuzumab in CLL, myeloablative doses of cyclophosphamide (200 mg/kg body weight daily for four days) without stem cell rescue in CLL, and IVIG. In one report, rituximab helped in achieving complete responses in 4 out of 13 patients.

Paraneoplastic ichthyosis. Berrady et al published a case series of five patients with this disease jointly seen by a dermatologist and a hematologist. Ichthyosis occurred two to

Table 3. Rare dermatologic paraneoplastic phenomena reported in the literature.

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>PN SYNDROME</th>
<th>NO.</th>
<th>ASSOCIATION</th>
<th>OTHER FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1–3)</td>
<td>Hypertrophic Osteoarthropy</td>
<td>1</td>
<td>Mediastinal HL in kids</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>Psoriasiform Lesions</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>Necrobiotic xanthogranuloma</td>
<td>HL &amp; CLL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6, 7)</td>
<td>Follicular Mucinosis</td>
<td>2</td>
<td>HL</td>
<td>Cutaneous lesions cleared with chemotherapy</td>
</tr>
<tr>
<td>(8)</td>
<td>Prurigo Nodularis</td>
<td>1</td>
<td>HL</td>
<td>Resolved with chemotherapy</td>
</tr>
<tr>
<td>(9–11)</td>
<td>Erythema Annulare Centrifugum</td>
<td>3</td>
<td>HL</td>
<td>Responded to vinblastine</td>
</tr>
<tr>
<td>(12)</td>
<td>Multiple Nevroid BCC Syndrome</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>Granulomatous Slack Skin</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>Bazex Syndrome</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(15, 16)</td>
<td>Ichthyosiform Atrophy of the skin</td>
<td>2</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(17)</td>
<td>Erythema Nodosum</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(18)</td>
<td>Generalized Eczema</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(19)</td>
<td>Alopecia Areatia</td>
<td>1</td>
<td>HL</td>
<td>Young adult</td>
</tr>
<tr>
<td>(20)</td>
<td>Epithelioid Granulomas</td>
<td>55</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(21)</td>
<td>Generalized Hyperhydrosis</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(22)</td>
<td>Myorythmia</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(23)</td>
<td>PACGD</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>Psoriasiform Lesions</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
<tr>
<td>(6, 7)</td>
<td>Follicular Mucinosis</td>
<td>1</td>
<td>HL</td>
<td>Cutaneous lesions cleared with chemotherapy for HL</td>
</tr>
<tr>
<td>(5)</td>
<td>Necrobiotic xanthogranuloma Sn</td>
<td>HL &amp; CLL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>Prurigo Nodularis</td>
<td>1</td>
<td>HL</td>
<td>Resolved with chemotherapy</td>
</tr>
<tr>
<td>(9–11)</td>
<td>Erythema Annulare Centrifugum</td>
<td>1</td>
<td>HL</td>
<td>Responded to vinblastine</td>
</tr>
</tbody>
</table>

Abbreviations: Bazex Syndrome, Acrokeratosis paraneoplastica with ichthyosis; Myorythmia: coarse alternating tremor; BCC, Basal Cell Carcinoma; PACGD, Progressive Atrophying Chronic Granulomatous Dermohypodermitis; HL, Hodgkins Lymphoma; CLL, Chronic Lymphocytic Lymphoma.
nine months after the initial symptoms of their hematological disorder. Two patients had NHL, one had HL, one had chronic myeloid leukemia, and one had an undifferentiated lymphoma. They reported that the ichthyosis progressed in step with the underlying blood disorder and regressed in three cases with the treatment of the underlying disease. The fact that the ichthyosis resolved with treatment of the underlying disease may well represent a paraneoplastic phenomenon.

**Paraneoplastic porphyria cutanea tarda.** HL is the most frequent association with paraneoplastic porphyria cutanea tarda (PCT). The PubMed literature showed, at least, five reported cases of PCT in patients with lymphoma.\(^{117-120}\) One of them also had a syndrome of inappropriate diuretic hormone and peripheral neuropathy.\(^{119}\) In a report from Mayo Clinic,\(^{117}\) lymphoma and PCT occurred simultaneously in one patient and PCT happened three and one and half years before the diagnosis of lymphoma in two other patients. The PCT was not resolved by radiotherapy or chemotherapy of the lymphoma, although it was probably less symptomatic after the treatment.

**Hepatobiliary Paraneoplastic Phenomena**

**Paraneoplastic hepatic sinusoidal ectasia and peliosis hepatis.** In the first published series of patients with paraneoplastic hepatic sinusoidal ectasia (HSE),\(^{121}\) Six out of sixteen hepatic biopsies revealed sinusoidal dilatation and only one of these showed lymphomatous infiltration. In another report, it presented during a relapse of HL.\(^{122}\) HSE may be the initial stage of peliosis hepatis (PH). PH is defined as blood-filled cystic cavities in the hepatic parenchyma. In seven patients with PH in HL, three of them were taking anabolic steroids\(^{123-125}\) and others were not (Table 4).\(^{123-127}\)

**Paraneoplastic intrahepatic cholestasis due to bile ductopenia** (Vanishing bile duct syndrome or VBDS). VBDS, characterized by intrahepatic cholestasis with a paucity of interlobular bile ducts, is a well-described paraneoplastic syndrome associated with HL. The cause is most likely immune-mediated given its association with drugs, GVHD, and autoimmune diseases apart from lymphomas. Biopsy reveals characteristic cholestasis due to the loss of bile ducts in the portal tracts without accompanying inflammation. Clinically, it is characterized by hepatic failure.\(^{128}\) Hepatic sinusoidal dilatation, a feature of VBDS, was shown to be present in HL patients presenting with systemic symptoms\(^{122}\) without any direct involvement of liver by the lymphoma. There is evidence that the expression of intercellular adhesion molecules and the major histocompatibility complex antigens in response to the cytokines produced by the HL result in cytotoxicity to the bilary epithelium.\(^{129,130}\)

It is important to rule out other causes of hepatic failure such as direct involvement of the liver by lymphoma, hemolysis, hepatotoxic viruses, drugs, and cholestatic jaundice due to obstructive lymphadenopathy. In a case series\(^{128}\) of published VBDS in the literature, 18 of 39 patients achieved cure with the treatment of the underlying HL, which included steroids and combination chemotherapy. Although commonly associated with HL, it is also observed in T-cell-rich B-cell lymphoma\(^{131}\) and peripheral T-cell lymphoma, not otherwise specified.\(^{132}\)

**Renal Paraneoplastic Phenomena**

Galloway introduced the term *paraneoplastic glomerulopathy* (PG) in the literature.\(^{133}\) PG usually manifests as nephrotic syndrome due to minimal change nephropathy (MCN), membranous nephropathy, membranoproliferative glomerulonephritis (MPGN), focal segmental glomerulosclerosis, and amyloidosis. Other rarer causes include extracapillary glomerulonephritis (ECGN) and immunotactoid glomerulonephritis. They are common in HL and CLL and rare in NHL.

**HL and PG.** The incidence of nephrotic syndrome is low at 0.5%–1%\(^{134}\) in HL. MCN (0.4%) and amyloidosis (0.1%) are common PGs as reported in a series of 1700 HL patients.

**Minimal change nephropathy.** The pathogenesis of MCN in HL is poorly understood. Studies support the hypothesis that an alteration of the malignant T-lymphocyte of HL, rather than the glomerular immune complexes, increases the permeability of the basement membrane.\(^{135}\) It can appear before, during, or at relapse of the HL. Therefore, follow-up of HL should include evaluation for proteinuria.

In a retrospective study of 21 patients,\(^{134}\) MCN was noted before the diagnosis of HL in 38%. In this subgroup, it was characterized by a steroid resistant nephrotic syndrome.

### Table 4. Rare Hepato-Biliary paraneoplastic phenomena reported in the literature.

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>PARANEOPLASTIC SYNDROME</th>
<th>NO.</th>
<th>ASSOCIATION</th>
<th>OTHER FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(39, 40)</td>
<td>Secondary Sclerosing Cholangitis</td>
<td>1</td>
<td>HL</td>
<td>“Better prognosis than VBS”</td>
</tr>
<tr>
<td>(41, 42)</td>
<td>Fulminant non-alcoholic steatohepatitis</td>
<td>2</td>
<td>HL</td>
<td>Autopsy did not reveal any HL in the liver in both patients suggesting that it is a PN phenomenon. In one patient, it improved dramatically with HL treatment</td>
</tr>
<tr>
<td>(43–46)</td>
<td>Peliosis Hepatis</td>
<td>Multiple case reports</td>
<td>HL</td>
<td>Treatment for HL improved liver function tests in some reports</td>
</tr>
<tr>
<td>(47)</td>
<td>Hepatic Sinusoidal Ectasia</td>
<td>1</td>
<td>HL</td>
<td></td>
</tr>
</tbody>
</table>

**Abbreviations:** VBS, Vanishing Bile duct Syndrome; HL, Hodgkins Lymphoma.
(50%). It appeared after the diagnosis of HL in 42% and appeared at the time of relapse in 55% of the cases. In 19%, the two diseases were diagnosed simultaneously. It is of interest to note that the effective treatment of HL with polychemotherapy resulted in the disappearance of the MCN. The predominant morphological subtype of HL associated with this disorder was nodular sclerosis (71% of patients) in one case series and mixed cellularity in another.135

**Amyloidosis in HL.** Effective therapies for HL may be the reason for the decreased incidence of amyloidosis in the recent years as most of the published cases were in the 1970s.136 The associated amyloid protein was assumed to be AA (amyloid A) as amyloidosis occurs in the late, inflammatory stages of HL in the absence of a monoclonal component. Franklin et al separated the protein subunits in the amyloid fibrils of patients and identified AA as the amyloid protein associated with two patients with HL.137

**Other PGs in HL.** Apart from the frequent MCN and amyloidosis, other less common PGs related to HL include focal segmental glomerulosclerosis (four patients), MPGN (two patients), membranous nephropathy (five patients), and ECGN (six patients).136,138–142

**CLL and the related B-cell lymphoproliferative disorders and PG.** Paraneoplastic glomerulopathies in CLL and the related B-cell lymphoproliferative disorders are rare. In the first retrospective case series of 13 patients published in 1992,143 a clear-cut relationship between the PG and the B-cell lymphoproliferative disorder was established in nine cases. Out of them, five patients had cryoglobulin-induced MPGN. Two had MPGN or mesangial hypertrophy with circulating and deposited noncryoprecipitating monoclonal IgG-kappa and IgM-kappa, respectively. In the remaining two patients, monotypic IgG-kappa glomerular deposits exhibiting fibrillar organization was observed in association with MPGN despite an absence of circulating M-component. Chlorambucil alone induced complete remission of nephrotic syndrome in five patients. This data proved that the PG associated with CLL and the related B-cell lymphoproliferative disorders was not serendipitous and also provided insight about the pathophysiology.

In a recent 2015 retrospective analysis,144 out of 15 patients with CLL/SLL, kidney biopsies showed CLL/SLL-specific monoclonal infiltrate in 10 biopsies and glomerulopathy in 9 biopsies. After treatment of the underlying CLL, improvement of the renal function was observed in 7 of 11 and remission of nephrotic syndrome in 5 of 7 patients.

The CLL-associated PG is characterized by the following features.1 In 50%, a diagnosis of both CLL and the PG occur simultaneously. Nephrotic syndrome is present in 85%, and one-third of them develop renal failure. Dysproteinemia is present in 50% of patients in the CLL, and this is in contrast to the 5%–10% in CLL without renal involvement. Chemotherapy directed at CLL (Chlorambucil) can cause complete remission of the PG and improvement of renal function.145

Other rare PGs associated with CLL include immunotactoid glomerulopathy and glomerulonephritis with organized microtubular monoclonal immunoglobulin deposition (GOMMID).146–148 In GOMMID, the cytoplasm of circulating lymphocytes contains organized microtubular structures.

**NHLs and PG.** In a total of 47 patients with NHL and PG reported in the literature,136,138,139,142 12 cases were due to MPGN and 12 due to ECGN. MCN is rare in NHL unlike in HL. A clear-cut association between NHL and the glomerulopathy can be established only in patients with cryoglobulinemic MPGN and those with immunotactoid glomerulonephritis with monotypic Ig deposits Table 5.1

**Conclusion**

Paraneoplastic disorders in lymphomas are very rare. HL is the most commonly associated lymphoproliferative disease. They can present before, at the time of diagnosis, during remission, or at relapse of the lymphoma. So, a high index of suspicion is required as some of these syndromes are reversible with effective

---

**Table 5.** Rare metabolic paraneoplastic phenomena reported in the literature.

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>PARANEOPLASTIC SYNDROME</th>
<th>NO.</th>
<th>ASSOCIATION</th>
<th>OTHER FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(24)</td>
<td>Hypoglycemia</td>
<td>1</td>
<td>HL</td>
<td>Due to insulin receptor antibody</td>
</tr>
<tr>
<td>(25)</td>
<td>Lactic acidosis</td>
<td>1</td>
<td>HL</td>
<td>Responded to chemotherapy</td>
</tr>
<tr>
<td>(26–28)</td>
<td>Hypouricemia</td>
<td>1</td>
<td>HL</td>
<td>Childhood HL</td>
</tr>
<tr>
<td>(29)</td>
<td>Hypertension</td>
<td>1</td>
<td>HL</td>
<td>Childhood HL</td>
</tr>
<tr>
<td>(30, 31)</td>
<td>SIADH</td>
<td>1</td>
<td>HL</td>
<td>Childhood HL</td>
</tr>
<tr>
<td>(32)</td>
<td>Neoplastic fever</td>
<td>21</td>
<td>HL</td>
<td>20 responded to naproxen within 12 hrs</td>
</tr>
<tr>
<td>(33)</td>
<td>Night sweats</td>
<td>9/34</td>
<td>HL</td>
<td>9 of 34 has recurrent symptoms as the only symptom</td>
</tr>
<tr>
<td>(34–37)</td>
<td>Hypercalcemia</td>
<td>HL, CLL</td>
<td>Calcitriol is proven as the cause</td>
<td></td>
</tr>
<tr>
<td>(38)</td>
<td>Hyper Aldosteronism</td>
<td>1</td>
<td>NHL</td>
<td></td>
</tr>
</tbody>
</table>

**Abbreviations:** No, Number of patients; HL, Hodgkin Lymphoma; NHL, Non Hodgkins Lymphoma; CLL, Chronic Lymphocytic Leukemia.
chemotherapy for the underlying lymphoma. Others need specific therapy such as steroids and immunosuppressive therapy. The rare nature of these diseases makes it difficult to identify new syndromes as most of the literature is based on case reports and small case series. However, significant progress has been achieved in the last 10 years due to defined clinical criteria, identification of the pathogenic culprit antibodies, early detection of the lymphomas, and efficient therapies for the lymphoma.

**Author Contributions**

Wrote the final manuscript: PT, AK, and JK. Collection and organization of the data, the creation of tables, and wrote the initial article: VSB and MG. Senior author, who revised and approved the final article: PB. All authors reviewed and approved of the final manuscript.

**REFERENCES**


90. Shu-Leung H. Available at: http://www movimiento disorders.org/MDS/About/ Movement Disorder Overviews/Chorea—Huntingtons Disease.htm


117. Leung-H. Available at: http://www movimiento disorders.org/MDS/About/ Movement Disorder Overviews/Chorea—Huntingtons Disease.htm