PfK13 Kelch Propeller Domain and Pfmdr1 Sequence Polymorphism in *Plasmodium falciparum* Field Isolates From Northeast Region, India

Manuj K Das¹, Mohan C Kalita², Sumi Chetry³ and Prafulla Dutta³

¹Department of Bioengineering and Technology, Gauhati University Institute of Science & Technology (GUIT), Gauhati University, Guwahati, Assam, India. ²Department of Biotechnology, Gauhati University, Guwahati, Assam, India. ³Division of Entomology and Filariasis, Regional Medical Research Centre, Northeast Region (ICMR), Dibrugarh, Assam, India.

ABSTRACT: Emergence of artemisinin-resistant *Plasmodium falciparum* in Southeast Asia has made an intense warning to global malaria control programme since Southeast Asia is playing a key role in the evolution of drug resistant malaria parasites. Several polymorphisms in K13 gene have been designated with developing resistance either in vitro or in vivo. In this study, polymorphisms within K13 kelch propeller domain and Pfmdr1 gene were investigated in a total of 134 *P. falciparum* field isolates circulating in 3 states of Northeast region of India, namely, Assam, Arunachal Pradesh, and Tripura because information regarding this is limited from this region. Six polymorphisms were detected, out of which 2 were new. A481V mutation was found in 4.5% of the total field isolates. A675V and D702N new mutations were present in 3.7% and 1.5% isolates, respectively. Synonymous polymorphism at codon 703 was highly observed (6.7%) than other polymorphisms. N86Y allele in Pfmdr1 gene was also noticed in isolates that contained mutation in K13 propeller domain, but N86 wild-type allele was found comparatively higher in frequency within overall isolates. Moreover, both nucleotide and haplotype diversities in K13 gene were high in Arunachal Pradesh isolates than other 2 states. This is the first report from Northeast region of India with evidence of A675V candidate mutation along with other 2 new mutations which pays attention for further molecular surveillance in this region to document detailed scenario of K13 polymorphism pattern corresponding to artemisinin resistance.

KEYWORDS: *Plasmodium falciparum*, K13, polymorphism, Northeast region, India

Introduction

Southeast Asia (SEA) has a consistent role in the evolution of multidrug-resistant *Plasmodium falciparum* (*P. falciparum*) parasites.²-⁵ After genome-wide association studies in concordance with artemisinin resistance, several polymorphisms in the kelch protein were designated with artemisinin resistance.⁶-⁸ The propeller domain or propeller region located in the so-called highly conserved kelch protein gene within the chromosome 13 is involved in ubiquitin-based degradation and parasite’s adaptation to oxidative stress.⁹ Three domains have been ascribed in the predicted structure of K13 kelch protein, i.e., a well-conserved *Plasmodium*-specific N-terminal domain, a BTB/POZ domain, and a C-terminal propeller domain which encode 6 canonical kelch motifs containing proteins that are evolutionary conserved across different species responsible for diverse cellular functions.⁹,¹⁰ Changes in the primary amino acid sequence due to mutations in these motifs have been identified as determinants of artemisinin resistance in SEA.¹¹,¹²

Mutations in kelch motifs cause upregulation of unfolded protein response pathways.¹³ Initially, a set of 20 different mutations (ranging from amino acid codons 440 to 623) was established *in vitro* as signatures of artemisinin resistance in western Cambodia.⁸ But accumulation of data over time suggests that mutations in this gene vary geographically and mostly in accordance with the employed antimalarial regimens.¹⁴-²¹ In a recent study, non-reference K13 mutations viz., 584V, 580Y, 574L, 568G, 553L, 543T, 539T, 493H, 481V, 449A, 255K, and 189T have been found involved in prolonged parasite resistance, and it was also stated that artemisinin resistance in SEA has emerged independently without sweeping from Cambodia.²² In 2016, most of them became either validated or candidate K13 mutation for artemisinin resistance.²³ However, role of 584V, 481V, 255K, and 189T mutations in artemisinin resistance are yet to establish.

The artemisinin resistance epicentre Myanmar shares its Northwestern boundaries with Northeastern states of India. More precisely, it has been explained that C580Y, F446I, and P574L mutations along with other mutations in kelch propeller domain associated with artemisinin resistance are collectively spreading in a rapid manner towards upper Myanmar and extending up to regions near India.¹⁶ Also, F446I mutation has been considered as the most prevalent in China-Myanmar border than other mutations.²⁴ Recently, G533A novel mutation has been reported in *P. falciparum* isolates of Northeast region, India along with other non-synonymous S549Y,
Pf in the chromosome 5 of resistance to partner drugs. It also depends on the concomitant easily in malaria endemic regions where ACT is the first-line artemisinin resistance. Resistance to ACT cannot be stated non-synonymous mutations are indications of emergence of genetically localised in the digestive vacuole of the parasite. Non-synonymous point mutations in this protein such as N86Y, Y184F, S1034C, N1042D, and D1246Y alter accumulation of antimalarial drugs in the digestive vacuole and hence are associated with either manifesting true resistance phenotype or increased sensitivity against chloroquine, quinine, mefloquine, halofantrine, lumefantrine, and artesunate derivatives both in vitro and in clinical field isolates.

Pertaining to artemisinin resistance, overall knowledge about polymorphism pattern in K13 propeller domain against different ACTs is of utmost importance. As ACT-artemether lumefantrine (ACT-AL) is the first line of treatment against uncomplicated malaria in the Northeast region of India, so this study was conducted to document current PfK13 kelch propeller polymorphisms as well as corresponding Pfmdr1 polymorphisms in circulating P. falciparum field isolates from this region. The findings of this study will throw light on polymorphism pattern in these genes because collective information regarding polymorphism in PfK13 propeller domain and Pfmdr1 gene is scarce from this part of the country.

Methodology

Ethics

This study was reviewed and ethically approved by Institutional Ethics Committee, Regional Medical Research Centre, Northeast region (ICMR), Dibrugarh, Assam for enrolment of human individuals in this study.

Study site and sample collection

This study was conducted in Assam, Arunachal Pradesh, and Tripura states of Northeast region, India. A total of 169 blood samples from malaria infected human subjects were collected in 2014 and 2015 during seasonal transmission. Individuals with symptomatic and uncomplicated malaria were enrolled only after obtaining written consent either from participated individuals or from their legal guardians. Infection with malaria parasite was first confirmed by rapid diagnostic test (SD Alere, Alere Medical Pvt. Ltd., Gurgaon, Haryana, India) from finger-pricked blood, and subsequently, venipunctured blood (maximum 3 mL), as a source of P. falciparum isolate, was collected in K3-EDTA Vacutainer for genotyping study.

Isolation of genomic DNA and screening of mono and mix parasite infection

About 100 µL (final volume) genomic DNA was extracted from each samples using QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) and used for genotyping study. Before genotyping of target genes, samples were screened and verified through a highly sensitive nested polymerase chain reaction (PCR) protocol to determine whether they were mono-infected with P. falciparum parasite or mix-infected with other Plasmodium species. Out of 169 malaria positive samples, a total of 134 samples were found to be mono-infected with P. falciparum parasite in the adopted nested PCR protocol (Figure 1). Samples with mix infection by other Plasmodium species were excluded, and only P. falciparum mono-infected samples were included for genotyping PfK13 and Pfmdr1 gene.

PCR amplification, sequencing, and sequence alignment

An 849-base pair (bp) Kelch propeller domain of K13 gene was amplified by a nested PCR protocol described recently. Two separate partial fragments (534 and 864 bp, respectively) of P. falciparum multidrug resistance 1 (Pfmdr1) gene were also amplified by a nested PCR protocol with slight modifications (Table 1). Consumables necessary for PCR were procured from Promega (Madison, WI, USA), and amplifications were performed in Veriti 96-Well Plate Thermal Cycler (Applied Biosystems, Foster City, CA, USA).

Polymerase chain reaction–amplified amplicons were purified by QIAEX II Gel Extraction Kit (Qiagen, Germany) after verifying in agarose gel (1.5%) electrophoresis. Purified PCR amplicons were outsourced to 1st Base DNA Sequencing Services, Malaysia, for bidirectional capillary sequencing using dyeoxy chain termination chemistry. Both forward and reverse DNA sequences were arranged in BioEdit sequence alignment editor to create consensus sequences. Each sequence was checked for the presence of single-nucleotide polymorphisms (SNPs) by reading through both forward and reverse strands. K13 kelch propeller domain polymorphism identified among studied isolates were further compared with sequences available in GenBank.
Basic Local Alignment Search Tool (BLAST). The set of K13 gene sequences were further translated, and amino acid sequences were compared with *P. falciparum* 3D7 reference sequences (PF3D7_1343700 and XM_001350122) in Molecular Evolutionary Genetic Analysis version 6.06 (MEGA 6.06) in search of any mutation. Similarly, *Pfmdr1* polymorphisms in constituent codons were analysed in comparison with *P. falciparum* 3D7 reference sequence (XM_001351751).

Statistical analysis

Primary and raw data were put into Microsoft Office Excel, and frequencies were calculated using the same programme. Independent-sample *t* test was performed to compare between continuous variables. Sequence polymorphism analysis including synonymous and non-synonymous SNPs, polymorphic and monomorphic polymorphisms, haplotype diversity (Hd), and nucleotide diversity (*π*) was performed using DnaSP software version 5.10. The ratio of non-synonymous to synonymous nucleotide substitution (dN/dS ratio) was assessed to determine departures from selective neutrality. For all performed tests, a *P* value <0.05 was considered to be statistically significant (at the 5% level). Significance for probability of rejecting null hypothesis of strict neutrality (dN = dS) was determined in MEGA 6.06 (Nei-Gojobori method, bootstrap value 10,000 replication) using the two-tailed *Z* test.

Nucleotide submission and accession numbers

Nucleotide sequences of *Pf*K13 gene in this study were deposited to GenBank, NCBI under accession numbers KX575512-KX575645, and nucleotide sequences of *Pfmdr1* gene in this study were deposited to GenBank, NCBI.
Results
Following the adopted nested PCR protocol, K13 kelch propeller domain from all 134 *P. falciparum* field isolates was successfully amplified (Figure 2), sequenced, and analysed for SNPs. We mostly gave importance about polymorphisms that might have occurred after codon 440 to correlate our findings with available data in SEA till date. However, we considered all polymorphisms (synonymous and non-synonymous) to evaluate the nucleotide diversity among the isolates.

Polymorphic sites in K13 kelch propeller domain
Genotyping analysis of K13 kelch propeller domain revealed a total of 6 polymorphic sites among these field isolates.

Table 1. PCR primers and thermal conditions for genotyping PfK13 and Pfmdr1 gene.

<table>
<thead>
<tr>
<th>GENE</th>
<th>PRIMER</th>
<th>SEQUENCE (5′-3′)</th>
<th>SIZE, BP</th>
<th>PCR CONDITION</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>K13 kelch propeller</td>
<td>Primary PCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K13_PCR_F</td>
<td>CCGGAGTGACCAATCTGGGA</td>
<td>2094</td>
<td>95°C for 15 min, 30 cycles (95°C for 30 s, 58°C for 2 min, 72°C for 2 min), then 72°C for 10 min; store at 4°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K13_PCR_R</td>
<td>GGGAAATCTGGTGTAACAGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K13_N1_F</td>
<td>GCCAAGCTGCCCATTCTTGG</td>
<td>849</td>
<td>95°C for 15 min, 40 cycles (95°C for 30 s, 60°C for 2 min, 72°C for 1 min), then 72°C for 10 min; store at 4°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K13_N1_R</td>
<td>GCCTTGTGAAAGAAGCAGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pfmdr1 protein

<table>
<thead>
<tr>
<th>Pfmdr1 fragment I</th>
<th>Primary PCR</th>
<th>Humphereys et al38</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN1/1</td>
<td>AGGTTGAAAAGACTGTTGAAC</td>
<td>578</td>
</tr>
<tr>
<td>REV/C1</td>
<td>ATGACACCACAAACATAAAAT</td>
<td></td>
</tr>
<tr>
<td>MDR2/1</td>
<td>ACAAAAGAGTGACGCATGAAT</td>
<td>534</td>
</tr>
<tr>
<td>NEWREV1</td>
<td>AAACGCAAGTAACATAAGTCA</td>
<td></td>
</tr>
</tbody>
</table>

Pfmdr1 fragment II

<table>
<thead>
<tr>
<th>Primary PCR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MDRFR2F1</td>
<td>GTGTATTGCTGTAAGAGCT</td>
<td>958</td>
</tr>
<tr>
<td>MDRFR2R1</td>
<td>GACATATTAATAACATGGGTC</td>
<td></td>
</tr>
<tr>
<td>MDRFR2F2</td>
<td>CAGATGATGAAATGTAAAATGC</td>
<td>864</td>
</tr>
<tr>
<td>MDRFR2R2</td>
<td>TAAATAACATGTTCTTGACT</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: PCR, polymerase chain reaction.
Isolates from Arunachal Pradesh showed the highest number of polymorphic sites, whereas isolates from Assam and Tripura contained only 1 polymorphic site within this domain.

Synonymous SNPs in K13 kelch propeller domain

In total, 3 synonymous SNPs were detected in this study (Table 2). Isolates from Assam were not found with any synonymous SNP. Only 1.5% isolates (2/134) particularly from Arunachal Pradesh were found to possess 2 synonymous SNPs in codons 700 and 701. In both codons, substitutions of adenine by guanine were observed at corresponding nucleotide sites 2100 and 2103, respectively. A set of 9 isolates (6.7%, 9/134) collectively from Arunachal Pradesh and Tripura contained another synonymous SNP at codon 703 in which substitution of adenine by cytosine was observed at its corresponding nucleotide site, *i.e.*, 2109.

Non-synonymous SNPs: A481V, A675V, and D702N mutation in K13 kelch propeller domain

No isolate from Tripura was found with any non-synonymous SNP, showing a conservative wild-type kelch propeller protein in circulating parasite population. 4.5% isolates in Arunachal Pradesh (6/134) had a non-synonymous SNP at nucleotide site 1442 of codon 481 (GCT to GTT, substituting cytosine by thymine) which resulted in A481V mutation in the protein (Table 2). Apart from 20 earlier known site mutations, 2 new mutations A675V and D702N (having non-synonymous SNPs at nucleotide sites 2024 and 2104, respectively) were observed. A675V mutation was found in 3.7% isolates (5/134; 1 in Arunachal Pradesh and other 4 in Assam). Similarly, 1.5% isolates (2/134) exclusively from Arunachal Pradesh were also found with D702N mutation. Two isolates from Arunachal Pradesh were collectively found with mutations in 3 consecutive codons, *i.e.*, 700, 701, and 702.

Table 2. Polymorphism observed in PfK13 kelch propeller domain of *Plasmodium falciparum* isolates in Northeast region, India.

<table>
<thead>
<tr>
<th>AMINO ACID CODON</th>
<th>NUCLEOTIDE SITE</th>
<th>REFERENCE AMINO ACID</th>
<th>MUTANT AMINO ACID</th>
<th>REFERENCE TRIPLET CODON</th>
<th>SNP IN TRIPLET CODON</th>
<th>FREQUENCY, n/N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>481^a</td>
<td>1442</td>
<td>A</td>
<td>V</td>
<td>GCT</td>
<td>GTT</td>
<td>6/134 (4.5)</td>
</tr>
<tr>
<td>675^a</td>
<td>2024</td>
<td>A</td>
<td>V</td>
<td>GCT</td>
<td>GTT</td>
<td>5/134 (3.7)</td>
</tr>
<tr>
<td>700^b</td>
<td>2100</td>
<td>S</td>
<td>—</td>
<td>TCA</td>
<td>TCG</td>
<td>2/134 (1.5)</td>
</tr>
<tr>
<td>701^b</td>
<td>2103</td>
<td>P</td>
<td>—</td>
<td>CCA</td>
<td>CGG</td>
<td>2/134 (1.5)</td>
</tr>
<tr>
<td>702^a</td>
<td>2104</td>
<td>D</td>
<td>N</td>
<td>GAT</td>
<td>AAT</td>
<td>2/134 (1.5)</td>
</tr>
<tr>
<td>703^b</td>
<td>2109</td>
<td>T</td>
<td>—</td>
<td>ACA</td>
<td>ACC</td>
<td>9/134 (6.7)</td>
</tr>
</tbody>
</table>

^aNon-synonymous mutations resulting mutant alleles.

^bSynonymous polymorphisms. Mutations in codons 700, 701, and 702 were observed collectively in 2 isolates of Arunachal Pradesh.
In total, 9.7% (13/134) isolates were observed with non-synonymous mutation in their K13 kelch propeller domain gene.

Pfmdr1 mutant alleles

Sequence polymorphism analysis (in codons 86, 184, 1034, 1042, and 1246) of Pfmdr1 protein gene revealed that codons 86 and 184 of Pfmdr1 protein were having mutant as well as wild-type alleles; rest of the codons were found to contain wild-type alleles only. The 86Y allele was found in 29.2% (14/48), 29.1% (16/55), and 35.5% (11/31) isolates from Arunachal Pradesh, Assam, and Tripura, respectively. The 184F mutant allele was found in 47.3% (26/55) and 6.5% (2/31) isolates from Assam and Tripura, respectively, and this mutant allele was not found in any isolates from Arunachal Pradesh (Table 3). Considering these 2 mutations, isolates were observed with 2 single mutants (i.e., YYSND and NYSND) and 1 double mutant (i.e., YFSND) Pfmdr1 protein haplotypes. Among all mutant protein haplotypes, single mutant YYSND haplotype was found in 47.3% (26/55) and 6.5% (2/31) isolates from Assam and Tripura, respectively, and this mutant allele was not found in any isolates from Arunachal Pradesh (Table 3).

Moreover, 22 isolates that exhibited polymorphisms in K13 propeller domain were found to contain both wild-type and mutant alleles in Pfmdr1 codon 86. Among these, 9 isolates were presented with N86Y mutant allele, i.e., A481V in PfK13 with N86Y in Pfmdr1 (1/6), A675V in PfK13 with N86Y in Pfmdr1 (3/5), S700 + P701 + D702N in PfK13 with N86Y in Pfmdr1 (1/2), and T703 in PfK13 with N86Y in Pfmdr1 (4/9). Remaining 13 isolates, though, possessed polymorphisms in K13 propeller domain but were found to have wild-type allele in Pfmdr1 codon 86 (Table 4). No other codons in Pfmdr1 were found with mutant allele among these isolates.

Molecular diversity of K13 kelch propeller domain gene among isolates

The overall nucleotide diversity and mean haplotype diversity observed among these field isolates were 0.0004 and 0.295, respectively. Nucleotide and haplotype diversities were observed significantly higher in isolates of Arunachal Pradesh than Assam and Tripura (P = 0.04 and 0.038, respectively) (Table 5). The ratio of non-synonymous to synonymous mutation (dN/dS) among Arunachal Pradesh isolates was found to be greater than 1 (1.022), indicating positive selection of K13 polymorphisms. The probability of rejecting null hypothesis of strict neutrality (dN = dS) was found nonsignificant in all 3 studied parasite populations.

Discussion

Northeast region of India has remained as an evolutionary setback for evolving drug-resistant P. falciparum, and introduction of new mutations in key drug-metabolising enzymes is continuing. Recently, a triple mutant sulfadoxine-resistant haplotype (i.e., ISGNGA) also became evident in a constituting state of Northeast India\(^4\) which was only evident earlier in western
Das et al

Table 5. Molecular diversity indices observed in PfK13 kelch propeller domain of Plasmodium falciparum isolates from Northeast region, India.

<table>
<thead>
<tr>
<th>PARAMETERS AND CHARACTERISTICS</th>
<th>VALUE OF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARUNACHAL PRADESH</td>
</tr>
<tr>
<td>Sample size</td>
<td>48</td>
</tr>
<tr>
<td>Total nucleotide sites observed</td>
<td>849</td>
</tr>
<tr>
<td>Monomorphic</td>
<td>843</td>
</tr>
<tr>
<td>Polymorphic</td>
<td>6</td>
</tr>
<tr>
<td>No. of segregating sites</td>
<td>6</td>
</tr>
<tr>
<td>No. of changes</td>
<td>3</td>
</tr>
<tr>
<td>Nucleotide diversity, (\pi) (SD)</td>
<td>0.00082 (0.00159)</td>
</tr>
<tr>
<td>Haplotype diversity (Hd)</td>
<td>0.480 (0.081)</td>
</tr>
<tr>
<td>Tajima’s value D (dN/dS)</td>
<td>1.022</td>
</tr>
</tbody>
</table>

Abbreviation: NA, not applicable.

Cambodia. A unique finding in this study is the documentation of A481V mutation in circulating P. falciparum isolates from Arunachal Pradesh. To the best of our knowledge, no report with such finding is available from this region till date. Although we observed this mutation in low frequency within this region, it has been found to be present comparatively higher than that of the earlier findings in Myanmar. Two new mutations, i.e., A675V and D702N, observed in this study have given our finding a distinct importance. These 2 mutations have also not been reported earlier from this region. Amino acid mutations, i.e., A676D and H719N (near 675 and 720 codons, respectively), of K13 propeller blade VI have been described recently from China-Myanmar border in low frequencies. Despite the actual role, we assume that D702N mutation might have emerged independently in this region and further evidence in future will unlock an approach for validation of its role in artemisinin resistance. However, A675V allele has been observed in frequency next to A481V allele. In a recent report by World Health Organization on Global Malaria Programme, A675V mutation has been described as non-reference allele responsible for prolonged parasite clearance half-life and its role is yet to evaluate.

Day-to-day progress in molecular surveillance of drug-resistant malaria parasites has opened new paradigm for proper understanding of its kind, nature, and spread. Different cross-sectional studies have described the scenario of prevailing and predominating K13 mutations in SEA, particularly, C580Y has reached fixation at the Myanmar-Thailand border and M476I prevailing in eastern border of Myanmar. In this study, neither C580Y nor M476I allele has been recorded in circulating isolates within this region. Moreover, evidence of F446I mutation in recent study indicates that it has either emerged in this region or spread from near most foci.

Presence of wild-type or mutant allele in codons 86, 184, and 1246 of Pfmdr1 protein collectively determine susceptibility and resistance against ACT-AL treatment policy. In this study, we have found only wild-type alleles in codons 184 and 1246 in isolates which are with K13 polymorphism, but a few are with mutant N86Y allele indicating about level of tolerance either against artemether or against lumefantrine, or both. N86 allele in Pfmdr1 has been shown in vitro in conferring less susceptibility to artesunate. Few isolates from Arunachal Pradesh have been
found to contain only N86\text{Y} allele, but 42 isolates from Assam and 13 isolates from Tripura have both N86\text{Y} and Y184\text{F} alleles. However, these isolates containing Pfmdr1 mutations in both 86 and 184 codons have been found to possess no polymorphism in their K13 kch propeller domain. Mutation in codon 184 has been described previously responsible to mediate resistance against some antimalarials.50 But it is unclear that both N86 and Y184\text{F} mutations are involved either in lumefantrine resistance or implicated with compensating other mechanisms in parasite fitness against antimalarials.51 Exact association of Pfmdr1 and PfK13 mutations in resistance development cannot be ascertained as study reports including these 2 genes are not sufficiently available. Wild-type N86 allele in Pfmdr1 has been found with increased tolerance to both artemether and lumefantrine separately.52-54 Moreover, the presence of N86 wild-type allele is a probable factor in the development of resistance against lumefantrine, and frequency of this allele varies according to different malarial transmission settings.55,56 Pfmdr1 Y184\text{F} allele has either minor impact on drug response or weaker association with antimalarial effectiveness as compared with N86\text{Y} mutation, and expression of wild-type or mutant allele in codon 184 primarily depends on codon 86 status, class of drug to which parasite expose and genetic background of Pf\text{crt} gene.57,58 Based on these, it can be said that parasites in this region with N86 wild-type allele in Pfmdr1 have acquired increased tolerance to artemether and lumefantrine partner drug. And mutant N86\text{Y} allele has effect on high resistance development against chloroquine. In this study, N86 has been found in higher frequency (i.e., 69.4\%) indicating most of the isolates undergoing increased tolerance to lumefantrine. It is also noteworthy to state that presence of Y184\text{F} mutation in considerable amount of \textit{P. falciparum} isolates in this region may be due to increased artemether-lumefantrine drug pressure on parasite population. However, the presence of both wild-type and mutant alleles in Pfmdr1 codon 86 along with K13 A675V mutation is notable because A675V is a candidate mutation for artemisinin resistance. In addition, we want to note that evidence of higher nucleotide and haplotype diversity in Arunachal Pradesh field isolates compared with isolates of other 2 states are due to the presence high segregating sites in K13 gene.

Conclusions

It can be said that K13 mutations involved in artemisinin resistance differ geographically. The evidence of A481V, A675V, and D702N non-synonymous mutations in this region is a quite important finding, suggesting emergence of other more K13 polymorphisms in the future. Screening of mutations in Pfmdr1 gene along with K13 propeller domain should also be taken into account to establish how mutations in this gene are associated with K13 mutations in different malaria endemic settings and correlated with resistance development because mutations in Pfmdr1 gene are involved in modulating tolerance against a group of antimalarial drugs. Most importantly, this study has confirmed the presence of A675V mutation for the first time in this region, indicating emergence of artemisinin resistance \textit{P. falciparum} parasites. Higher frequency of Pfmdr1 N86 wild-type allele also point towards parasites’ increased tolerance to the partner drug of currently employed ACT. In short, it can be concluded that further molecular surveillance to document K13 and Pfmdr1 mutation patterns in details is of utmost importance in this part of India. Moreover, study in larger samples set will deliberately give a clear picture about prevalent and predominant K13 and Pfmdr1 mutation patterns in this region and their role against currently employed ACT-AL drug policy. These will help in understanding whether artemisinin resistance has been evolved in this region, and if so, it will further assist in implementing effective control programmes to avoid spread of resistant \textit{P. falciparum} population from this region to other areas.

Acknowledgements

The first author would like to acknowledge UGC for Rajiv Gandhi National Fellowship Award. The authors would like to thank those persons who helped technically during the time of sample collection. Moreover, sincere participations of individuals at study sites have been highly acknowledged.

Author Contributions

MKD, MCK, and PD conceived and designed the experiments. MKD and SC analysed the data and wrote the first draft of the manuscript. PD and MCK contributed to the writing of the manuscript. MCK, PD, MKD, and SC agree with manuscript results and conclusions. PD, MCK, and SC jointly developed the structure and arguments for the paper. PD, MCK, MKD, and SC made critical revisions and approved final version. All authors reviewed and approved the final manuscript.

Disclosures and Ethics

As a requirement of publication, author(s) have provided to the publisher signed confirmation of compliance with legal and ethical obligations including but not limited to the following: authorship and contributorship, conflicts of interest, privacy and confidentiality, and (where applicable) protection of human and animal research subjects. The authors have read and confirmed their agreement with the ICMJE authorship and conflict of interest criteria. The authors have also confirmed that this article is unique and not under consideration or published in any other publication, and that they have permission from rights holders to reproduce any copyrighted material. Any disclosures are made in this section. The external blind peer reviewers report no conflicts of interest.

REFERENCES

Das et al.

